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1 Introduction

In 2003, Arsenijevi¢ introduced the generalized concept of syntactically and

semantically trivial di�erences between formal theories1. According to his def-

inition, two formal theories that can be interpreted in no model so that the

variables of one of them and the variables of the other one range over the el-

ements of one and the same basic set should still be said to be just trivially

di�erent if there are two sets of structure preserving translation rules that map

one-one, respectively, the in�nite set of all the formulae of one of the theories

into a set of formulae of the other one and provide, at the same time, that all

the truths about the elements and their relations in any model of one of the two

theories are unequivocally expressed as truths about basic elements and their

relations in a model of the other theory, and vice versa. What matters in such

cases is not the sameness of the elements of the basic sets in a model of two

theories but the equivalence of the truth expressiveness of the two theories, that

is, the fact that we can use any of the two theories to express all the truths of

1See Arsenijevi¢ (2003).
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the other theory. In any of such cases, any model of one of the two theories can

be said to supervene on the corresponding model of the other one.

The reason why in such cases the resulting mappings between the two sets

of formulae must be Felix Bernstein's mappings2 from each of the sets into and

not onto another set of formulae follows from the fact that, since the variables of

the two theories supposedly cannot range over the elements of one and the same

basic set, each element of the basic set of a model of one of the theories must

be unequivocally associated with more than one elements in the corresponding

model of the other theory, and so, each formula of the language into which

we translate must have more variables than the corresponding formula of the

language from which we translate.

In their two articles3, Arsenijevi¢ and Kapetanovi¢ proved that the Canto-

rian point-based and the Aristotelian stretch-based system of the in�nite linear

continuum are just trivially di�erent in the generalized sense. Each point in a

model of the point-based system can be corresponded to the abutment place

of two equivalence classes of abutting stretches in the corresponding model of

the stretch-based system and represented through a pair of stretches, whereas

each stretch in a model of the stretch-based system can be corresponded to and

represented through a pair of (end-)points in the corresponding model of the

point-based system.

In the present article, we want to prove that the same result holds for the

point-based and the region-based system of the in�nite two-dimensional con-

tinuum, so that, contrary to those who believe that the two systems represent

interesting alternatives to each other, each of them can be used equally well

for expressing all the truths about its own basic elements and their relations

as well about its rival's basic elements and their relations. In particular, as

2See Cantor (1962), p. 450.
3See Arsenijevi¢ and Kapetanovi¢ (2008a) and Arsenijevi¢ and Kapetanovi¢ (2008b).
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we shall see, any of the two theories can be used at will for expressing truths

about one-dimensional entities, which, not being the elements in any model of

any of the two systems, can still be spoken of as entities supervening either on

null-dimensional or on two-dimensional entities of an in�nite two-dimensional

continuous structure. This will be an additional illustration of why what matters

is not the sameness of the set of basic elements in a model but the truth expres-

siveness of the systems concerning all the entities and their relations present in

the model explicitly or implicitly.

2 The region-based system SR

For two reasons we shall formulate both the region-based system SR and the

point-based system SP in the in�nitary language Lω1ω1 . Both reasons have to

do with the main point of the paper. First, since the �rst-order language is not

su�cient for the formulation of the axioms de�ning a continuous structure, we

need some stronger language, but we also want to avoid the standard second-

order language, since in SR we want to speak explicitly only about regions and

their relations, just as in SP we want to speak explicitly only about points

and their relations. So, the language Lω1ω1 represents an appropriate and the

weakest possible extension of the �rst-order language in which we may let the

variables of SR range exclusively over the set of regions and the variables of SP

range exclusively over the set of points as two respective universes of discourse.4

In this way, we straightforwardly get that to speak of other entities, such as lines,

will mean to speak directly just of regions and their relations or about points

and their relations. The second reason for choosing Lω1ω1
is that it will enable

us to formulate the two sets of translation rules as directly related to regions as

4As it is done, for instance, in Humblin (1969), Hamblin (1971), Needham (1981), Burgess
(1982) and Bochman (1990).
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the elements of the basic set of SR and points as the elements of the basic set

of SP without having to mention explicitly any intermediary entities.5

Now, though in sketching the region-based system we shall proceed in a pure

Hilbertian manner6, so that what regions and their relations are will follow, after

all, from the set of all the axioms implicitly de�ning them, let us say in advance

that in any intended model the regions are meant to be circle-like entities or

any other entities topologically homeomorphic to them, which should cover an

in�nite two-dimensional surface without gaps.

Let SR contain � besides logical constants, =,∀ and ∃ � individual variables

a1, a2, ..., ai, ..., b1, b2, ..., bi, ..., c1, c2, ..., ci, ...(sometimes also without subscripts)

that will supposedly range over an in�nite set of regions as the basic set of

the intended model, which will further be speci�ed through the axioms that

implicitly de�ne various relations that hold between regions. Let the only non-

logical relation symbol be |, which will, analogously to Sche�er's stroke, serve

to de�ne all relations that we want to hold between regions. Intuitively, a | b

says that regions a and b are connected.

For any kind of connection between any two regions, the following three

axioms should hold 7, which we shall call The Connectedness Axioms of SR:

(ASR1) ∀a (a | a),

(ASR2) ∀a∀b (a | b→ b | a),

(ASR3) ∀a∀b (∀c (c | a↔ c | b)→ a = b).

The non-connectedness between two regions and some speci�c topologico - mere-

ological kinds of the connection between two regions can be de�ned in the fol-

lowing way:

5Contrary to what is done in standard formalizations based on Set Theory. See, for in-
stance, Munkres (2000), Ch. 2.

6See Hilbert (1902), pp. 447 �.
7An axiomatisation based on the primitive relation of connection is developed in Clarke

(1981).
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• a - b⇔def ¬a | b , to be read as �a and b are not connected� (see diagram

1 )

• a v b⇔def ∀c (c | a→ c | b), to be read as �a is a part of b�

• a @ b ⇔def a v b ∧ a 6= b , to be read as �a is a proper part of b� (see

diagram 2 )

• a ◦ b⇔def ∃c (c v a ∧ c v b), to be read as �a and b overlap� (see diagram

3 )

• a∞b⇔def a | b∧¬a ◦ b , to be read as �a and b are externally connected�

(see diagram 4 )

• a C b⇔def a @ b∧∀c (c∞a→ ¬c∞b), to be read as �a is an internal part

of b� (see diagram 5 )

a

b

diagram 1

a

b

a

b

or

diagram 2

a b

diagram 3

a b

diagram 4
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a

b

diagram 5

Notice that v is re�exive, antisymmetric and transitive (de�ning the partial

ordering), whereas @ and C are irre�exive, asymmetric and transitive (de�ning

the strict ordering).

In order to preclude that two disconnected regions make up a region, we shall

introduce the following axiom, which we shall call The Non-Disconnectedness

Axiom (see diagram 6, where, if this were not be axiomatically precluded, a

could be said to be a region consisting of a1 and a2):

(ASR4) ∀a∀b∀c((b C a ∧ c / a)→ ∃d((d | c ∧ d | b) ∧ ∀e(e / d→ e / a)))

a

b c

d
e

a a1 2

diagram 6

The following axiom, which we shall call The Gunkness Axiom, states that

every region has proper parts, precluding the existence of atomic regions, which

means that, according to the usage of �gunk� that has become popular after

David introduced it8, the continuum de�ned by SR is gunky (see diagram 7 ):

8See Lewis (1991), pp. 20-21.
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(ASR5) ∀a∃b (b C a)

Analogously, the existence of a maximal region is precluded by the following

axiom, which we shall call The Inverse Gunkness Axiom (see diagram 8 ):

(ASR6) ∀a∃b (a C b)

diagram 7 diagram 8

In order to secure that basic elements of SR be homeomorphic to a circle

and not to a two dimensional doughnut, we need the following axiom, which we

shall call The Anti-Torus Axiom (see diagram 9 ):

(ASR7) ∀a∀b(∀c(b C c→ c ◦ a)→ b / a)

a

b
c

diagram 9

Let us now turn to a technically rather tricky task of de�ning implicitly

the two-dimensionality of the intended model of SR, which was, according to

our best evidence, never done before. Namely, since we want to introduce two-

dimensionality in the Hilbertian way, the set of axioms should be so selected as
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to be interpretable only in the structures that are two-dimensional and not more

than two-dimensional. In order to obtain that, we have �rst, before formulating

the two-dimensionality axiom, to de�ne some additional relations in which two

or more regions can stand.

To start with, we shall say that the region b is a tangential part of the region

a: b� a, if and only if the following de�nition is ful�lled (see diagram 10 ):

• a� b⇔def a @ b ∧ ∀c (a C c→ ¬c v b)

a

b

diagram 10

Now, the regions b and c will be said to be (B)ounded by the region a:

B(a, b, c), if and only if the following de�nition is ful�lled (see diagram 11 ):

B (a, b, c) ⇔def b� a ∧ c� a ∧ b∞c ∧ ¬∃d ((d∞b ∨ d∞c)∧

∧d @ a ∧ ∀e (d v e ∧ e� a→ e ◦ b ∨ e ◦ c)

a

b c

diagram 11
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The regions a, b, c, and d will be said to be (N)ested: N(a, b, c, d), if and

only if the following de�nition is ful�lled (see diagram 12 ):

• N (a, b, c, d)⇔def (a∞b ∧ a∞c ∧ a∞d ∧ b∞c ∧ b∞d ∧ c∞d)

a

b c

d

diagram 12

The regions a, b, c, and d will be said to be all mutually externally connected,

(W )ittnessing the meeting at a point: W (a, b, c, d), if and only if the following

de�nition is ful�lled (see diagram 13 ):

• W (a, b, c, d)⇔def ∃e (B (e, a, b) ∧N (a, b, c, d) ∧ c @ e ∧ d @ e∧

∧∀f ((f v e ∧ f | c ∧ f | d)→ (f | a ∨ f | b)))

a

b

c

d

diagram 13

The two regions a and b will be said to be externally connected by meeting

at a (P )oint: aPb, if and only if the following de�nition is ful�lled (see diagram

14 ):

• aPb⇔def ∃c∃dW (a, b, c, d)
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a

b

diagram 14

Here is the right place to note that we mention the point only informally

and intuitively when we speak about regions meeting at a point since in SR

the points are not introduced explicitly. If we wanted, we could introduce them

explicitly, but we do not need to do so. We may wait till they occur as elements

in the point-based system and begin to speak in SR about them only then, with

the use of the translation rules holding between the two systems.

The region a will be said to meet with b and c at the point at which the

regions b and c meet: D(a, b, c), if and only if one of the (D)isjuncts from the

following de�nition is true (see diagram 15 ):

• D (a, b, c)⇔def

bPc ∧ (((a v b ∨ b v a ∨ a ◦ b) ∧ aPc)∨

∨((a v c ∨ c v a ∨ a ◦ c) ∧ aPb))

a

b

c

a

b

c

a b

c

a b

a

b

c a

b

c

b

c
a

b

or or or or or

diagram 15

We are now ready to formulate the two-dimensionality axiom. First, it

should be noted that the last de�nition says only when the region a should be
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said to meet with b and c at the point at which b and c meet but does not

preclude the possibility that a meets b and c at the point at which b and c meet

even if no disjunct from the de�nition of D(a, b, c) is true. It is easy to see

that a could meet b and c at the point at which b and c meet by approaching

the meeting point along some third direction, without having any part common

with c and d. But if the relational structure in which SR is interpreted were

two-dimensional, it would not be possible that no disjunct from the de�nition of

D(a, b, c) be true. So, in order to provide that the structure is two-dimensional,

we have only to state, by The Two-Dimensionality Axiom, that one of the

disjuncts is true in any given case:

(ASR8)
∀a, b, c1, d1, c2, d2(W (a, b, c1, d1) ∧W (a, b, c2, d2)→

→ D(c1, c2, d1) ∧D(c1, c2, d2))

The last thing we have to do is to preclude axiomatically the possibility

of �holes� within the set of all regions. This can be done analogously to the

way in which Cantor precluded the existence of �gaps� in the one-dimensional

continuum. The set of null-dimensional points which is dense is also continuous

if any in�nite accumulation of points that has a limit is such that the limit is

an element of the basic set itself.9 In our case, any in�nite accumulation of

regions, where a successive region contains the previous one as its internal part

(see diagram 16 below), has to be such that its limit is a region from the basic

set that contains all the accumulating regions as its internal parts. The axiom

will be formulated by the use of the following two de�nitions of ϕ (a, b1, b2, ...)

and ψ (a, b, c1, c2, ...):

• ϕ (a, b1, b2, ...)⇔def

∧
n<ω bn C a ∧

∧
m<n<ω bm C bn∧

∧¬∃c(
∧

n<ω bn C c ∧ c C a)

9cf. Cantor (1962), p. 194.
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• ψ (a, c, b1, b2, ...)⇔def c∞a ∧ ∀d(c C d→
∨

n<ω bn ◦ d)

Now, The Continuity Axiom reads as follows:

(ASR9) ∀a(∀bn)n<ω(ϕ(a, b1, b2, ...)→ ∃cψ(a, c, b1, b2, ...))

diagram 16

Obviously, the above axiom precludes the existence of a hole outside the re-

gion a. One may raise the question whether we should formulate an additional

axiom which will preclude the existence of a hole within a. However, the axiom

(ASR5) together with the axiom (ASR6) is su�cient to preclude such a possi-

bility. Namely, according to the axiom (ASR5), there must be a region which is

a proper part of a and then, starting from this region, we can always apply to

it the axiom (ASR6) which guarantees the absence of the alleged holes within

a.

3 The point-based system SP

Intuitively, in order to cover completely an in�nite two-dimensional plane (or

a two-dimensional surface topologically homeomorphic to it) by a set of null-

dimensional points, we need two sets of points, each making up an in�nite set of

parallels (parallel straight lines in the case of a plane or parallel quasi-straight-

lines in the case of a surface topologically homeomorphic to it ) such that each

point from the �rst set of parallels is a point common with one and only one
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point from the other set, and vice versa. In what follows we use parallels to refer

both to parallel lines and to quasi-parallel lines in the sense explained above (see

diagram 17 ). In such a way, the continuity of each line (supervening on the set

of points arranged so as to build up the linear continuum) from one of the sets

will guarantee the continuous order of the lines of the other set, and vice versa.

diagram 17

In order to express the required arrangement of points axiomatically, we

shall �rst de�ne ϕ1 (~α) , ..., ϕ10 (~α) as shorthands for the formulae which are

axioms of the points-based system of the in�nite linear continuum as they are

formulated in Lω1ω1
by Arsenijevi¢ and Kapetanovi¢.10

1. ϕ1 (~α)⇔def

∧
j<ω(¬αj < αj)

2. ϕ2 (~α)⇔def

∧
j,k,l<ω((αj < αk ∧ αk < αl)→ αj < αl)

3. ϕ3 (~α)⇔def

∧
j,k<ω(αj < αk ∨ αk < αj ∨ αj = αk)

4. ϕ4 (~α)⇔def

∧
j,k,l<ω((αj = αk ∧ αj < αl)→ αk < αl)

5. ϕ5 (~α)⇔def

∧
j,k,l<ω((αj = αk ∧ αl < αj)→ αl < αk)

6. ϕ6 (~α)⇔def

∧
j<ω αj

∨
k<ω αk(αk < αj)

7. ϕ7 (~α)⇔def

∧
j<ω αj

∨
k<ω αk(αj < αk)

10See Arsenijevi¢ and Kapetanovi¢ (2008a) and Arsenijevi¢ and Kapetanovi¢ (2008b).
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8. ϕ8 (~α)⇔def

∧
j,k<ω(αj < αk →

∨
l<ω(αj < αl ∧ αl < αk))

9. ϕ9 (~α)⇔def ((∃β(
∧

j<ω αj < β)→

→ ∃γ(
∧

j<ω αj < γ ∧ ¬∃δ(
∧

j<ω αj < δ ∧ δ < γ)))

10. ϕ10 (~α)⇔def ((∃β(
∧

j<ω β < αj)→

→ ∃γ(
∧

j<ω γ < αj ∧ ¬∃δ(
∧

j<ω δ < αj ∧ γ < δ)))

It is important to note why in the above de�nitions we should and could omit the

universal quanti�cation present at the beginning in the corresponding axioms

of the Point-Based axiomatization of the linear continuum. On the one hand,

we have had to omit the universal quanti�cation because we need the variables

to be free in view of the intended de�nition of a set of points that make up an

in�nite set of parallel lines. On the other hand, in view of the way in which the

above de�nitions are introduced, the omission of the universal quanti�cation

doesn't allow for the possibility of producing counterexamples. Let us suppose,

for example, that one wants to produce a counterexample to what is implied by

de�nition 9. For doing this, he could introduce new variables instead of those

present in the de�nition and suppose that in this particular case there is no least

upper bound in spite of the fact that there is an upper bound. However, there

is nothing that can prevent us to re-introduce systematically the variables that

occur in de�nition 9 instead of the new variables and show in this way that the

alleged counterexample is just an instance of what is said in the de�nition.

Given the previous ten formulae, the following formula de�nes a set of points

standing in such relations that they make up an in�nite set of parallels that as

such may though need not be continuously ordered:

Ψ
(
~α1, ~α2, ...

)
⇔def

∧
j≤10

∧
i<ω ϕj

(
~αi
)
∧ ¬∃x, y

(
αi
n = x = y = αj

m

)
,

for i, j,m, n < ω and i 6= j

Now, following the intuitive suggestion, the continuity of a set of parallels

de�ned by the last formula will be guaranteed by letting this and some other set
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of parallels cut in the way intuitively described above. In addition, in order to

secure that the relational structure is just two-dimensional, it is necessary not

only that there are two sets of parallels that cut in the way required but also

that for any third set of parallels it holds that there is no point at them that

would not be one of the points from the two sets of cutting parallels. All this

will be implicitly de�ned by the following axiom, which we may call Descartes'

Axiom (remembering the concept of the Cartesian Product, as a result of which

Descartes became famous in the history of mathematics11):

(ASP 1) (∃~αn)n<ω(∃~βm)m<ω(Ψ(~α1, ~α2, ...) ∧Ψ(~β1, ~β2, ...)∧

∧αi
j = βl

k ∧ ¬αi
j = βp

q ∧ ∀γ(
∨

r,s<ω γ = αr
s)),

for l 6= p, k 6= q and i, j, l, k, p, q < ω

It is important to note that, contrary to the region-based system, in which

we had to preclude the possibility of �holes� by introducing a special axiom, we

don't have to do that in the case of the point-based system. Namely, though no

single in�nite set of parallels as such precludes the existence of �holes� within

it (see diagram 18 bellow), Descartes' Axiom precludes the possibility that this

holds for an in�nite set of parallels that are continuous, since the way in which

the �cut� of the two sets of parallels is de�ned and stated to exist by (ASP 1)

imposes the continuity of all these parallels themselves (see diagram 17 above).

The existence of �holes� within a set of continuous parallels is precluded by the

non-existence of Cantor �gaps� within any of the cutting parallels.

11See, for instance, Boyer and Merzbach (2011), p. 319.
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diagram 18

4 Translation rules

4.1 Translation of SP into SR

Intuitively, two regions in a model of SR, a and b, which stand in the meeting-at-

a-point relation aPb, meet just at one single point of the corresponding model

of SP . However, there is an in�nite number of pairs of other regions that also

meet at that very point. So, there is an in�nite number of ways in which one

and the same point of SP can be identi�ed within SR. Fortunately, however,

all these ways can be exhaustively classi�ed as only 25 kinds of ways in which

two pairs of regions, a and b, and c and d, can be related if a and b, and c and

d should meet at one and the same point. Namely, regions a and c can stand in

one of the �ve possible relations of the following kind: a = c, a v c, c v a, a ◦ c,

or a∞c, and the same holds mutatis mutandis for b and d, where in the case of

overlapping, say a ◦ c, there must be a proper part of a region c which is also a

proper part of a and which meets region b at-a-point, and where in the case of

a∞c and b∞d, the said regions must stand in the witnessing-meeting-at-a-point

relation W (a, b, c, d).

In order to secure that the identity of two points in SP when spoken of in

SR is just about the unique point we need a function f1, mapping the variables
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of SP into the variable pairs of SR:

f1 : αn → 〈a2n−1, a2n〉 (n = 1, 2, ...)

In order to obtain a compact version of the �rst translation rule T1, we shall

introduce the shorthands for �ve ways in which regions a2m−1, a2n−1, a2m and

a2n may be:

• Φ1 (A,C)⇔def A = C

• Φ2 (A,C)⇔def A v C

• Φ3 (A,C)⇔def C v A

• Φ4 (A,C)⇔def A ◦ C →
∃x, y((x v A ∨ x v C ∨ y v A ∨ y v C)∧

∧ (xPA ∨ xPC ∨ yPA ∨ yPC)

• Φ5 (A,C)⇔def A∞C

where A and C stand for a2m−1 and a2n−1, or a2m and a2n respectively.

The identity of αm and αn in SP should be expressed by the formula of SR

that stands on the right side in the translation rule T1:

(T1) αm = αn =T1 APB ∧ CPD ∧
∨

i,j≤5(Φi(A,C) ∧ Φj (B,D))∧

∧ ((Φ5 (A,C) ∧ Φ5 (B,D))→W (A,B,C,D))

where A, B, C and D stand for a2m−1, a2n−1, a2m and a2n respectively.

Two things here should be noted. Firstly, in de�ning the formula Φ4 we

could make use of variables x and y for speaking about proper parts of A and

C owing to the fact that the relation de�ned for A and C is independent of the

the way in which the the regions B and D stand (see diagram 19 ).
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A

C

E B

diagram 19

Secondly, we could not rely on the same technique in de�ning the formula

Φ5 because, unlike the previous case, we need to take into account all the four

regions meeting at the same point in order to preclude that the two corre-

sponding pairs meet at di�erent points, and that is why we had to introduce

the witnessing-meeting-at-a-point in order to preclude such a possibility. The

diagram 20 illustrates the case that should be precluded:

A

B

C

D

diagram 20

It is important to notice that (T1) is not a de�nition that would make the

formulae �anking the =T1 sign interchangeable within any of the two systems,

since the formula on the left side of the =T1 sign is not a formula of SR just

as the formula on the right side is not a formula of SP . What (T1) enables us

to do is only to express a truth expressed in SP as the corresponding truth of

SR. �What matters is the equivalence of the truth expressiveness and not the

sameness of the sets of basic elements�.
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The second translation rule should tell us how to translate the speaking of

a given line within SP into the speaking of that line within SR. This case is

particularly interesting because the lines are not basic elements neither in a

model of SP nor in a model of SR. The lines are supervening entities both in

the models of SP as well in the models of SR. So, this case shows a fortiori

why �what matters is the equivalence of the truth expressiveness and not the

sameness of the sets of basic elements�.

In order to formulate the second translation rule, we have �rst to formulate

both how a line is to be spoken of in SP as well as how it is to be spoken of in SR.

The crucial di�erence between these formulations and the translation rule we are

looking for consists in the fact that these two formations will be de�nitions that

enable us to speak of lines within the �rst and the second system, respectively.

Given the de�nitions of ϕ1, ϕ2, ..., ϕ10 above, the speaking of a line within

SP can be easily de�ned as speaking of the points χ (α1, α2, ...) so that:

χ (α1, α2, ...)⇔def

∧
j≤10

ϕj (α1, α2, ...)

For the de�nition of a line within SR, we will use the de�nition of the tangen-

tial part � introduced above and restrict it in two steps suggested by diagram

21.

diagram 21

First, the relation l , as a restriction of �, will be de�ned as a binary
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relation on the set of all regions so that:

al b⇔def a� b ∧ ¬∀c ((cPa ∧ ¬c ◦ b)→ cPb)

Intuitively, alb says that the region a is a tangential part of the region b but

so that the two regions share necessarily more than a point on the boundary.

And now, secondly, let l∗ be the transitive closure of a relation l i.e., the

smallest transitive relation containing l. This means that any tangential part

is developing along an in�nite line.

In order to secure that by speaking about a line in SP and in SR we are

speaking of one and the same line, we need the function f2 mapping an in�nite-

tuple of variables of SP into an in�nite-tuple of variables of SR:

f2 : (α1, α2, ...)→ (a1, a2, ...)

So, in view of these two de�nitions and in view of how the speaking of a line

is de�ned above for the system SP , the second translation rule T2 should read

as follows:

(T2) χ (α1, α2, ...) =T2 a1 l∗ a2 ∧ a2 l∗ a3 ∧ ...

4.2 Translation of SR into SP

Intuitively, a region within a model of SP can be understood as a two-dimensional

circle, or any other �gure homeomorphic to it, consisting completely of a set

of points. In what follows we shall refer by one-dimensional circle both to the

genuine circle-line as well as to any closed line topologically homeomorphic to

it, whereas by two-dimensional circle we will refer to genuine two dimensional

circle-region as well as any region topologically homeomorphic to it. To �nd out

how we can speak in SP of an entity of the latter kind is, perhaps unexpectedly,

a rather tricky task. The hint is to �nd a way to speak of a line segment and

of a closed line, and then de�ne a one-dimensional circle as a set of points such
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that it consists of all the segments having two points of the closed line as its end-

points and consisting only of the elements from the set of points constituting

the one-dimensional circle itself.

Following the hint, the �rst thing to do is to see when the points α1, α2, ...

make up a line segment, which we shall denote by ς (α1, α2, ...). Remembering

the way in which a line is de�ned within SP , it becomes clear that we have

to leave out ϕ6 − ϕ7 from ϕ1 − ϕ10, which implicitly de�ne the continuum as

in�nite, and introduce ϕ∗
6 and ϕ∗

7 instead (see diagram 22 ):

endpoint endpoint

diagram 22

(ϕ∗
6) ϕ∗

6 (α1, α2, ...)⇔def

∨
j<ω

(∧
k<ω αk < αj

)
(ϕ∗

7) ϕ∗
7 (α1, α2, ...)⇔def

∨
j<ω

(∧
k<ω αj < αk

)
Now, by putting ϕ1−ϕ5 and ϕ

∗
6−ϕ∗

7 and ϕ8−ϕ10 together, we get the following

de�nition of a segment ς (α1, α2, ...):

ς (α1, α2, ...)⇔def

∧
j≤5 ϕj (α1, α2, ...) ∧ ϕ∗

6 (α1, α2, ...)∧

∧ϕ∗
7 (α1, α2, ...) ∧

∧
8≤j≤10 ϕj (α1, α2, ...)

In order to de�ne a closed line, we need a trickier device. First, it is necessary

to note that we always obtain an in�nite line if we leave out a point of it (see

diagram 23 ).
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The missing point

diagram 23

So, we de�ne, �rst, the set of all the lines from which just one point of each

of them is dropped out:

π (α1, α2, ...)⇔def χ (α2, α3, ...) ∧ χ (α1, α3, ...) ∧ ...

... ∧ χ (..., αj−1, αj+1, ...) ∧ ... ∧ ¬χ (α1, α2, ...)

and then, using this de�nition, we de�ne τ (β1, β2, α1, α2, ...) as a closed line:

τ (β1, β2, α1, α2, ...)⇔def

ς (α1, α2, ...) ∧
∨

i<ω β1 = αi ∧
∨

i<ω β2 = αi∧

∧
∧

j<ω αj < β1 ∧
∧

j<ω β2 < αj

Then, �nally, we de�ne a �full two-dimensional circle� (see diagram 24 ) as:

µ (α1, α2, ...)⇔def

(∃βi)i<ω (∃γj)j<ω (ς (β1, β2, ...) ∧ π (γ1, γ2, ...)∧

∧
∨

k,l<ω τ (γk, γl, β1, β2, ...)∧

∧
(∨

m,n<ω αm = βn ∨
∨

m,n<ω αm = γn

)

diagram 24
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In order to secure that the identity of two regions in SR when spoken of

in SP is just about the unique �region� we need a function f∗, mapping the

variables of SR into an in�nite-tuple of variables of SP :

f∗1 : an → (αn1 , αn2 , ...) (n = 1, 2, ...)

Now, in view of all this, the two regions am and an identical in SR should

be spoken of in SP in accordance with the following translation rule:

(T ∗
1 ) am = an =T∗

1

(µ(αm1
, αm2

, ...) ∧ µ(αn1
, αn2

, ...))→
∧

i<ω αmi
= αni

In order to secure that by speaking about a line in SR and in SP we are speaking

of one and the same line, we need the function f∗2 mapping an in�nite-tuple of

variables of SR into an in�nite-tuple of variables of SP :

f∗2 : (a1, a2, ...)→ (α1, α2, ...)

The next translation rule concerns speaking of the line within SP into the

speaking of the corresponding line of SR. It would be just the inverse of the

translation rule (T2) above:

(T ∗
2 ) a1 l∗ a2 ∧ a2 l∗ a3 ∧ ... =T∗

2 χ (α1, α2, ...)

And now, given that all the relations in SR are de�ned via |, the only remaining

translation rule that we need is the rule concerning the connection of two regions.

So, given the function f∗1 , the translation rule (T ∗
3 ) reads as follows:

(T ∗
3 ) am | an =T∗

3 µ(αm1
, αm2

, ...) ∧ µ(αn1
, αn2

, ...) ∧
∨

i,j<ω αmi
= αnj
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5 Proof that SR and SP are only trivially di�erent

in the generalized sense

5.1 Proof that all the axioms of SR are theorems of SP

Translation of (ASR1)

According to (T ∗
1 )− (T ∗

3 ) , the axiom

(ASR1) ∀a (a | a)

reads in SP as follows:

(∀αn)n<ω (µ (α1, α2, ...)→ (µ (α1, α2, ...) ∧ µ (α1, α2, ...) ∧
∨

i,j<ω αi = αj))

that is, after the double application of the contraction rule:

(∀αn)n<ω (µ (α1, α2, ...)→
∨

i,j<ω αi = αj)

The last formula is trivially true in SP , since every two dimensional circle

indeed has at least one point in common with one point from the set of points

from which it consists.

Translation of (ASR2)

According to (T ∗
1 )− (T ∗

3 ) the axiom

(ASR2) ∀a∀b (a | b→ b | a),

reads in SP as follows:

(∀αmi
)i<ω(∀αnj

)j<ω((µ(αm1
, αm2

, ...) ∧ µ(αn1
, αn2

, ...) ∧
∨

i,j<ω αmi
= αnj

→
→ (µ(αn1

, αn2
, ...) ∧ µ(αm1

, αm2
, ...) ∧

∨
i,j<ω αni

= αmj
)

which gives:

(∀αmi)i<ω(∀αnj )j<ω((µ(αm1 , αm2 , ...) ∧ µ(αn1 , αn2 , ...) ∧
∨

i,j<ω αmi = αnj )→
→
∨

i,j<ω αni
= αmj

)
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The last formula is also trivially true in SP , since two identical, overlapping

or touching two-dimensional circles have at least one common point.

Translation of (ASR3)

According to (T ∗
1 )− (T ∗

3 ) the axiom

(ASR3) ∀a∀b (∀c (c | a↔ c | b)→ a = b).

reads in SP as follows:

(∀αmi
)i<ω(∀αnj

)j<ω(µ(αm1
, αm2

, ...) ∧ µ(αn1
, αn2

, ...)→

→ (∀αkl
)l<ω(µ(αk1 , αk2 , ...)→

→ (µ(αm1
, αm2

, ...) ∧ µ(αk1
, αk2

, ...) ∧
∨

i,l<ω αmi
= αkl

)↔

↔ (µ(αm1
, αm2

, ...) ∧ µ(αk1
, αk2

, ...) ∧
∨

i,l<ω αmi
= αkl

)→

→ (µ(αm1 , αm2 , ...) ∧ µ(αn1 , αn2 , ...)→
∧

i<ω αmi = αni))

which gives:

(∀αmi)i<ω(∀αnj )j<ω(µ(αm1 , αm2 , ...) ∧ µ(αn1 , αn2 , ...)→ (∀αkl
)l<ω

(µ(αk1
, αk2

, ...)→ (
∨
αmi

= αkl
↔
∨

i,l<ω αmi
= αkl

)→

→
∧

i<ω αmi
= αni

The last formula is obviously true in SP , for if it holds for two two-dimensional

circles that every two-dimensional circle that has at least one point common to

one of them has also at least one point common with the other one, the two

two-dimensional circles must be identical to each other.

Translation of (ASR4)

In order to see what we get, by translating the axiom

(ASR4) ∀a∀b∀c((b C a ∧ c / a)→ ∃d((d | c ∧ d | b) ∧ ∀e(e / d→ e / a)))

into SP , let us �rst see how the relations v, @, ◦, ∞ and C of the system SR

look like in SP :
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• (αm1
, αm2

, ...) vp (αn1
, αn2

, ...)⇔def µ (αm1
, αm2

, ...) ∧ µ (αn1
, αn2

, ...)∧

∧ (∀αkl
)l<ω

(
µ (αk1 , αk2 , ...)→

(∨
αmi = αkl

→
∨

i,l<ω αmi = αkl

))
• (αm1

, αm2
, ...) @p (αn1

, αn2
, ...)⇔def (αm1

, αm2
, ...) vp (αn1

, αn2
, ...)∧

∧¬
∧

i<ω αmi
= αni

• (αm1 , αm2 , ...) ◦p (αn1 , αn2 , ...)⇔def

⇔def (∃αkl
)l<ω(µ(αk1

, αk2
, ...) ∧ (αk1

, αk2
, ...) vp

(αm1
, αm2

, ...) ∧ (αk1
, αk2

, ...) vp (αn1
, αn2

, ...))

• (αm1
, αm2

, ...)∞p (αn1
, αn2

, ...)⇔def µ (αm1
, αm2

, ...) ∧ µ (αn1
, αn2

, ...)∧

∧
∨

i,j<ω αmi
= αnj

∧ ¬ (αm1
, αm2

, ...) ◦p (αn1
, αn2

, ...)

• (αm1
, αm2

, ...) Cp (αn1
, αn2

, ...)⇔def

⇔def (αm1
, αm2

, ...) @p (αn1
, αn2

, ...)∧

(∀αkl
)l<ω ((αk1 , αk2 , ...)∞p (αm1 , αm2 , ...)→

→ ¬ (αk1
, αk2

, ...)∞p (αn1
, αn2

, ...))

In view of this, the axiom (ASR4) reads in SP as follows:

(∀αmi)i<ω

(
∀αnj

)
j<ω

(∀αkl
)l<ω ((αn1 , αn2 , ...) Cp (αm1 , αm2 , ...)∧

∧ (αk1
, αk2

, ...) Cp (αm1
, αm2

, ...)→

→ (∃αre)e<ω (µ (αr1 , αr2 , ...) ∧
∨

l,e<ω αre = αkl
∧

∧
∨

j,e<ω αre = αnj
∧
(
∀αsf

)
f<ω

((αs1 , αs2 , ...) Cp (αr1 , αr2 , ...)→

→ (αs1 , αs2 , ...) Cp (αm1
, αm2

, ...))

The last formula is true in SP because, according to the de�nition of µ, what

is required is that any two end-points of the region that consists of two sepa-

rate two-dimensional circles can be connected by a line segment that contains

only the points from the set of points of which the two two-dimensional circles

consists, which is impossible.
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Translation of (ASR5)

According to (T ∗
1 ) − (T ∗

3 ) and the way in which Cp is to be understood in

SP , the axiom

(ASR5) ∀a∃b (b C a)

reads as follows:

(∀αmi
)i<ω(µ(αm1

, αm2
, ...)→

→ (∃αnj )j<ω(µ(αn1 , αn2 , ...) ∧ ((αn1 , αn2 , ...) Cp (αm1 , αm2 , ...))))

This formula is trivially true in SP , since it holds for every two-dimensional

circle that there is a two-dimensional circle that consists of its points only but

does not contain all of them.

Translation of (ASR6)

According to (T ∗
1 ) − (T ∗

3 ) and the way in which Cp is to be understood in

SP , the axiom

(ASR6) ∀a∃b (a C b)

reads as follows:

(∀αmi)i<ω(µ(αm1 , αm2 , ...)→

→ (∃αnj
)j<ω(µ(αn1

, αn2
, ...) ∧ ((αm1

, αm2
, ...) Cp (αn1

, αn2
, ...))))

The last formula is true in SP , since no two-dimensional circle covers the

whole in�nite two-dimensional surface, so that it holds for every two-dimensional

circle that there is a two-dimensional circle that contains all but also more points

than it.

Translation of (ASR7)

According to (T ∗
1 )− (T ∗

3 ) and the way in which Cp and vp are to be under-

stood in SP , the axiom
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(ASR7) ∀a∀b(∀c(b C c→ c ◦ a)→ b / a)

reads as follows

(∀αmi
)i<ω(∀αnj

)j<ω((∀αkl
)l<ω((αn1

, αn2
, ...) Cp (αk1

, αk2
, ...)→

→ (αk1 , αk2 , ...) ◦p (αm1 , αm2 , ...))→ (αn1 , αn2 , ...) Cp (αm1 , αm2 , ...))

Given the way in which the regions are translated as sets of points of SP ,

the last formula says nothing else but that there is no two-dimensional circle

within which there could be a set of points that would not be a set of points of

the two-dimensional circle itself.

Translation of (ASR8)

In order to see what we get, by translating the axiom

(ASR8)
∀a, b, c1, d1, c2, d2(W (a, b, c1, d1) ∧W (a, b, c2, d2)→

→ D(c1, c2, d1) ∧D(c1, c2, d2))

into SP , let us �rst see how the relations �, B, N , W , P and D of the system

SR look like in SP :

• (αm1 , αm2 , ...)�p (αn1 , αn2 , ...)⇔def ((αm1 , αm2 , ...) @p (αn1 , αn2 , ...)∧

∧(∀αkl
)l<ω((αm1

, αm2
, ...) Cp (αk1

, αk2
, ...)→

→ ¬(αk1 , αk2 , ...) vp (αn1 , αn2 , ...))

• Bp

(
αmi

, αnj
, αkl

)
i,j,l<ω

⇔def (αn1
, αn2

, ...)�p (αm1
, αm2

, ...)∧

∧(αk1 , αk2 , ...)�p (αm1 , αm2 , ...) ∧ (αn1 , αn2 , ...)∞p(αk1 , αk2 , ...)∧

∧¬(∃αre)e<ω(((αr1 , αr2 , ...)∞p(αn1
, αn2

, ...)∨

∨(αr1 , αr2 , ...)∞p(αk1
, αk2

, ...)∧

∧(αr1 , αr2 , ...) @p (αm1 , αm2 , ...)∧

∧
(
∀αsf

)
f<ω

((αr1 , αr2 , ...) vp (αs1 , αs2 , ...)∧

∧ (αs1 , αs2 , ...)�p (αm1
, αm2

, ...)→

→ (αs1 , αs2 , ...) ◦p (αn1 , αn2 , ...) ∨ (αs1 , αs2 , ...) ◦p (αk1 , αk2 , ...)))
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• Np

(
αmi

, αnj
, αkl

, αre

)
i,j,l,e<ω

⇔def (αm1
, αm2

, ...)∞p (αn1
, αn2

, ...)∧

∧ (αm1 , αm2 , ...)∞p (αr1 , αr2 , ...) ∧ (αm1 , αm2 , ...)∞p (αs1 , αs2 , ...)∧

∧ (αn1
, αn2

, ...)∞p (αr1 , αr2 , ...) ∧ (αn1
, αn2

, ...)∞p (αs1 , αs2 , ...)∧

∧ (αr1 , αr2 , ...)∞p (αs1 , αs2 , ...)

• Wp

(
αmi

, αnj
, αkl

, αre

)
i,j,l,e<ω

⇔def

⇔def

(
∃αsf

)
f<ω

(Bp ((αs1 , αs2 , ...) , (αm1 , αm2 , ...) , (αn1 , αn2 , ...))∧

∧Np ((αm1
, αm2

, ...) , (αn1
, αn2

, ...) , (αk1
, αk2

, ...) , (αr1 , αr2 , ...))∧

∧ (αk1
, αk2

, ...) @p (αs1 , αs2 , ...) ∧ (αr1 , αr2 , ...) @p (αs1 , αs2 , ...)∧

∧(∀αvo)o<ω((αv1 , αv2 , ...) vp (αs1 , αs2 , ...)∧

∧(µ(αv1 , αv2 , ...) ∧ µ(αk1
, αk2

, ...) ∧
∨

l,o<ω αvo = αkl
∧

∧
(

(µ (αv1 , αv2 , ...) ∧ µ (αr1 , αr2 , ...)) ∧
∨

s,o<ω αvo = αrs

)
→

→
(

(µ (αv1 , αv2 , ...) ∧ µ (αm1 , αm2 , ...)) ∧
∨

i,o<ω αvo = αmi

)
• (αm1

, αm2
, ...)Pp (αn1

, αn2
, ...)⇔def (∃αkl

)l<ω (∃αre)e<ω

Wp((αm1 , αm2 , ...) , (αn1 , αn2 , ...) , (αk1 , αk2 , ...) , (αr1 , αr2 , ...))

• Dp ((αm1
, αm2

, ...) , (αn1
, αn2

, ...) , (αk1
, αk2

, ...))⇔def

⇔def (αm1 , αm2 , ...) vp (αn1 , αn2 , ...) ∨ (αn1 , αn2 , ...) vp (αm1 , αm2 , ...)∨

∨ (αm1
, αm2

, ...) ◦p (αn1
, αn2

, ...) ∨ (αm1
, αm2

, ...) vp (αk1
, αk2

, ...)∨

∨ (αk1 , αk2 , ...) vp (αm1 , αm2 , ...) ∨ (αm1 , αm2 , ...) ◦p (αk1 , αk2 , ...)

In view of all this, the axiom (ASR8) reads in SP as follows

(∀αmi
)i<ω

(
∀αnj

)
j<ω

(∀αkl
)l<ω (∀αre)e<ω

(
∀αsf

)
f<ω

(∀αvo)o<ω

(Wp

(
αmi , αnj , αkl

, αre

)
i,j,l,e<ω

∧Wp

(
αmi , αnj , αsf , αvo

)
i,j,f,o<ω

→

→ Dp ((αk1
, αk2

, ...) , (αs1 , αs2 , ...) , (αr1 , αr2 , ...))∧

∧Dp ((αk1 , αk2 , ...) , (αs1 , αs2 , ...) , (αv1 , αv2 , ...)))

In order to see that the last formula must be true in SP , it is su�cient to

realize that, according to (ASP 1), there can be no lines that are skew.
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Translation of (ASR9)

In order to see what we get, by translating the axiom

(ASR9) ∀a (∀bn)n<ω (ϕ (a, b1, b2, ...)→ ∃cψ (a, c, b1, b2, ...))

into SP , let us �rst see how the following two formulae

• ϕ (a, b1, b2, ...)⇔def

⇔def

∧
n<ω bn C a ∧

∧
m<n<ω bm C bn ∧ ¬∃c

(∧
n<ω bn C c ∧ c C a

)
• ψ (a, b, c1, c2, ...)⇔def b∞a ∧ ∀d

(
b C d→

∨
n<ω cn | d

)
of the system SR look like in SP . Recall that the symbol −→α is used to denote

a countable sequence of variables α1, α2, ..., with or without a subscript.

• ϕp

(
−→α ,−→β1,

−→
β2, ...

)
⇔def

⇔def µ (−→α ) ∧
∧

n<ω µ
(−→
βn

)
∧
∧

n<ω

−→
βn Cp

−→α
∧

m<n<ω

−→
βm C

−→
βn∧

∧¬∃−→γ (µ (−→γ ) ∧
∧

n<ω

−→
βn Cp

−→γ ∧ −→γ Cp
−→α )

• ψp

(
−→α ,−→β ,−→γ1,−→γ2, ...

)
⇔def

⇔def µ (−→α ) ∧ µ
(−→
β
)
∧
∧

n<ω µ (−→γn) ∧ −→β∞p
−→α∧

∀−→δ
(
µ
(−→
δ
)
∧ −→β Cp

−→
δ →

∨
n<ω
−→γn |p

−→
δ
)

In view of all this, the axiom (ASR9) reads in SP as follows:

∀−→α
(
∀−→βn

)
n<ω

(µ (−→α ) ∧
∧

n<ω µ
(−→
βn

)
∧ ϕp

(
−→α ,−→β1,

−→
β2, ...

)
→

→ ∃−→γ (µ (−→γ ) ∧ ψp

(
−→α ,−→γ ,−→β1,

−→
β2, ...

)
))

It is clear that the last formula is true in SP . since the continuity of the

parallels mentioned precludes the existence of a �gap� in any directions.

5.2 Proof that the axiom of SP is a theorem of SR

In order to see what we get by translating the axiom
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(ASP 1)

(∃~αn)n<ω(∃~βm)m<ω(ψ(~α1, ~α2, ...) ∧ ψ(~β1, ~β2, ...)∧

∧αi
j = βl

k ∧ ¬αi
j = βp

q ∧ ∀γ(
∨

m,n<ω γ = αm
n )),

for l 6= p, k 6= q and i, j, l, k, p, q < ω

into SR, let us �rst see how the following formula

ψ(~α1, ~α2, ...)⇔def

∧
j≤10

∧
i<ω ϕj(~α

i) ∧ ¬∃x, y(αi
n = x = y = αj

m),

for i, j,m, n < ω and i 6= j

of the system SP look like in SR:

ψr(~a1,~a2, ...)⇔def a
1
1 l∗ a12 ∧ a12 l∗ a13 ∧ ...∧

∧a21 l∗ a22 ∧ a22 l∗ a23 ∧ ... ∧ ¬∃x, y(ain = x = y = ajm),
for i, j,m, n < ω and i 6= j

To see what this means, let us �rst remember that the supposed function f2

tied to the translation rule T2 implies that we always speak about a particular

line selected by this function so that it holds that according to T2 the translation

rule χ (α1, α2, ...) =T2 a1 l∗ a2 ∧ a2 l∗ a3 ∧ ... says that in SR we speak only of

the regions represented by diagram 21, that is, of the regions constituting that

which is a line in SR. The formula ψr

(
~a1,~a2, ...

)
speaks of lines being �parallel�

by asserting that no two regions from the de�ning set of regions making up

a line can be identical, for otherwise the lines de�ned by them would share a

common part, however small.

In view of all this, the axiom (ASP 1) reads in SR as follows:

(∃~an)n<ω(∃~bm)m<ω(ψr(~a1,~a2, ...) ∧ ψr(~b1,~b2, ...)∧
∧aij | blk ∧ ¬aij | bpq ∧ ∀c(

∨
m,n<ω c | amn )),

for l 6= p, k 6= q and i, j, l, k, p, q < ω

The crucial but also a rather tricky thing is to see exactly why all the ax-

ioms of SR are needed to secure the truth of the translation of (ASP 1). Quite

generally, the connectedness axioms (ASR1) - (ASR3) are needed because they

express primitive properties of regions without which it would obviously be im-

possible to speak of points and lines. In particular, the axiom (ASR4) precludes
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the possibility that two disconnected �parts� of one region make up one and

the same line; the axioms (ASR5) - (ASR6) guarantee the existence of in�nitely

many regions needed for the very formulation of the axiom (ASP 1); the axiom

(ASR7), which precludes the existence of doughnut-like regions, is needed to

secure the connectedness of every region to some region of which the translation

of (ASP 1) speaks; the axiom (ASR8) is necessary for precluding the possibility

that the lines the axiom (ASP 1) is speaking about are skew; and �nally, the

axiom (ASR9) secures the continuity of regions necessary for the continuity of

lines.

6 Metalogical and Metaontological Consequences

In view of the above results, two general conclusions, one metalogical and one

metaontological, can be straightforwardly derived.

From the metalogical point of view, it follows that the two formal theories,

the point-based and the region-based theory, have the same truth-expressive

power in relation to the representation of the in�nite two-dimensional contin-

uum. So, it hardly makes any sense to raise, at least ceteris paribus, the meta-

logical question of whether it is the point-based rather than the region-based or

the region-based rather the point-based theory that which represents the true

theory of the in�nite two-dimensional continuum. Given that all truths and

only truths of any of the two theories can be expressed as truths of any of the

theories, it follows that if any of the two theories is true, the other one is true

as well.

From the metaontological point of view, it follows that the in�nite two-

dimensional continuum can be analyzed by starting with a set of null-dimensional

points, with one-dimensional lines and two-dimensional regions supervening on

them, as well as by starting with a set of two-dimensional regions, with one-
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dimensional lines and null-dimensional points supervening on them. So again,

it hardly makes any sense to raise, at least ceteris paribus, the metaontological

question of whether the points rather than regions or the regions rather than

points represent the basic elements of the in�nite two-dimensional continuum.

Given that regions can be said to supervene on points just as it can be said

that points supervene on regions, there can be no ontological priority in view

of these two kinds of entities.

Moreover, given the translation rules (T2) and(T ∗
2 ), according to which lines

are to be spoken of in SP and SR respectively, along with the way in which it

is shown by Arsenijevi¢ and Kapetanovi¢12 how points can be spoken of in the

Interval-Based System SI and the way in which two sets of parallels are used

above for speaking of the regions of the in�nite plain, we can even generalize

the story and conclude that, metalogically, the Point-Based System SP , the

Interval-Based System SI and the Region-Based System SR, as formal theories

of the two-dimensional continuum, are all equivalent in view of their truth-

expressive power, while, metaontologically, there can be no ontological priority

within the in�nite two-dimensional continuum between null-dimensional points,

one-dimensional intervals and two-dimensional regions.

In view of all this, it is curious why the Aristotelian and the Cantor theory

of the continuum (or of the one-dimensional and two-dimensional continua at

least) are still being considered as two rival theories, while the struggle between

Gunkologists and Pointillists has been always cited as ontologically important

disagreement. It is true, from a historical point of view, that original Aristotelian

theory turned out to be insu�cient in view of the fact that it lacked the second

Cantor condition for the one-dimensional continuity13, which is expressed above

through ϕ9 and ϕ10 which are de�ned in section (3) above. But since this con-

12See Arsenijevi¢ and Kapetanovi¢ (2008a) and Arsenijevi¢ and Kapetanovi¢ (2008b).
13See Cantor (1962), pp. 194-195.
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dition has become known, it should have been no problem for Neo-Aristotelians

to adjust it in order to complete the Aristotelian Interval-Based System of the

linear continuum14 as well as to complete the Aristotelian Region-Based System

of the two-dimensional continuum (as it is done above by the introduction of

the Continuity Axiom (ASr9)). It must be that some deep-rooted prejudice has

prevented philosophers to �nd out a peace-making strategy that would enable

us to overcome the great struggle between two parties. In what follows, we will

try to give a diagnosis of the phenomenon.

6.1 Rejection of Quine's Semantico-Ontological Slogan

Due to the fact that Aristotle accepted that which he called Zeno's Axiom, which

says that no entity of a higher dimension can consist of entities of a lower dimen-

sion, he considered the three-dimensional bodies as basic entities, with surfaces,

lines and points as limits supervening on them. Analogously, he considered pe-

riods as basic elements of time, with instants only supervening on them. One

can understand that after Cantor's introduction of the second continuity con-

dition, which makes it possible to say that the entities of higher dimensions

consist of null-dimensional entities, both mathematicians and philosophers have

become prone to accept his analysis of the continuum as the right one, since

null-dimensional entities look as the best candidates to be considered as proper

elements of the continuum, given that only they do not contain either further

null-dimensional entities or any other entities as their parts.15 But this cannot

be the whole explanation of the fact that no deeper comparison between the

two theories of the continuum has been done.

When in the last three decades of the last century a considerable number of

14As it is done in Arsenijevi¢ and Kapetanovi¢ (2008a) and Arsenijevi¢ and Kapetanovi¢
(2008b).

15See, for instance, Russell (1903), Ch. XXXV, Russell (1914), Ch. V, Carnap (1928), 1.4,
Grünbaum (1952), Grünbaum (1974), Ch. 6, Salmon (1975), Ch. 1, Robinson (1989), Lewis
(1994) and Earman and Roberts (2006).
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philosophers tried to revive the Aristotelian approach, both within philosophy

of time as well as within philosophy of space, they did it, at least tacitly, as if the

Aristotelian theory should be reconsidered as an alternative to the Cantor one,

and not in order to investigate the question of their possible equivalence.16 True,

van Benthem proclaimed that �systematic connections between point structures

and period structures enable to use both perspectives at will�.17 But he didn't

o�er any new logico-ontological framework within which these �systematic con-

nections� are to be understood and, in particular, he didn't raise the direct

question of whether there is a clearly de�nable sense in which the two theories

could be said to be equivalent.

There are two related reasons why the question of the possible equivalence

between the two theories has not been further investigated. The �rst reason

has directly to do with Quine's famous semantico-ontological slogan, which says

that �to be assumed as an entity is to reckoned as the value of a variable�.18

The second reason has to do with the fact that the conception of supervenience

was, and still has been, applied nearly exclusively within philosophy of mind,

when the mental is said to supervene on the physical but not vice versa, so

that the cases of the mutual supervenience, where two sets of entities mutually

supervene on each other, has never come into the focus of consideration. Let us

explain!

If two theories are such that their variables can range in no model over the

elements of one and the same basic set, they represent, according to Quine's

Slogan, they are about two hopelessly di�erent ontologies, because what exists

according to one of them does not exist according to the other, and vice versa.

16See, for instance, Hamblin (1969), Hamblin (1971), Humberstone (1979), Foldes (1980),
Needham (1981), Burgess (1982), Comer (1985), White (1988), Bochman (1990a), Bochman
(1990b), van Benthem (1991), Ch. I.3., and van Benthem (1995). Particularly important
are the articles of Roeper's (1997) and (2006), given that they concern more-dimensional
Aristotelian continua. See also Mormann (2000) and Sambin (2003).

17van Benthem (1991), p. 84.
18Quine (1961), p.13.
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The same consequence is present in Model Theory.19 Quine's Slogan repre-

sent the basis for standard di�erentiation between formal theories that are only

notationally di�erent amongst themselves and those which are not. So, accord-

ing to standard view, the Aristotelian and the Cantor theory of the continuum

represent real alternatives and not just trivially di�erent theories.

As for the reason concerning supervenience, it may seem that the superve-

nience relation cannot be symmetric. Some set of entities supervenes on some

other set of entities just because the latter is the supervenience base on which

the former supervenes, and not vice versa. So, even if the theory of superve-

nience allows us to say that more-dimensional entities also exist somehow in the

Cantorian model, they exist in a sense which is di�erent from the sense in which

null-dimensional entities exist. If we wanted to accommodate Quine's Slogan to

�t in the theory of existence that is involved in the theory of supervenience, we

could say that Quine's Slogan concerns that which exists irreducibly, on which

everything else that exists, in a secondary sense, is theoretically and ontologi-

cally reducible. But even then, the Aristotelian and the Cantorian theory would

be, from the very beginning, logically and ontologically non-trivially di�erent,

since the supervenience bases of the two theories are radically di�erent.

However, let us consider the following analogy. Suppose that we compare two

formalizations of Propositional Calculus, for instance the Hilbert-Ackermann

and the Nicod formalization, whose axioms are di�erent. Now, though the two

formalizations do not di�er in view of all the truths they express, one could

suggest that, in fact, they represent two non-equivalent theories, because they

di�er in view which truths are basic and which are only derived. Of course, we

would reject such a suggestion as silly and claim that the di�erence between

basic and derived truths is irrelevant in the given case. Consequently, we would

continue to hold that the di�erence in formalization does not mean that the

19see Hodges (1993), pp. 1-2.
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Hilbert-Ackermann20 and the Nicod21 formalization represent di�erent theories

of Propositional Calculus. But why the di�erence in view of basic truths doesn't

matter in the given case, while the di�erence in view of basic entities should

matter in the case of Gunkology and Pointillism, given that the relation between

basic and derived truths is asymmetric just as it is the relation between basic

and supervening entities?

There is hardly any essential di�erence between the two cases, or at least we

don't see any. The only reason for remaining stubborn and claiming that there

is still an essential di�erence between the two has only to do with the prejudice

condensed in Quine's Semantico-Ontological Slogan, and that is the reason why

it ought to be rejected. For our purposes, instead of Quine's Slogan, we should

rather accept the Slogan cited more times above: What matters by comparing

two possibly equivalent theories is not the isomorphism or non-isomorphism of

the basic sets of their models but the equivalence or non-equivalence of their

truth-expressive powers. This is the essence of Arsenijevi¢'s generalized de�-

nition of the syntactically and semantically trivial di�erence between formal

theories, which was used above in the proof that the Point-Based and the

Region-Based Theory of the two-dimensional continuum, and two ontologies,

Pointillism and Gunkology, as two respective mutually supervening models of

them, are only trivially di�erent amongst themselves.

6.2 Refutation of the Argument of Arntzenius' and

Hawthorne's

Generally, the authors who tried to re-establish the Aristotelian theory of the

continuum, several of them cited above,22 assumed from the very beginning

20See Hilbert and Ackermann (1968), p. 27.
21See Nicod (1917).
22See n. 15.
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that the Aristotelian and the Cantorian theory are more than trivially di�erent.

However, Arntzenius and Hawthorne o�ered an argument23 that it must be so,

which is prima facie convincing and which therefore should be analyzed and

refuted.

The argument is based on what Arntzenius and Hawthorne call No-Zero

Assumption,24 to which Gunkologists are allegedly committed. Namely, since

�a thing is gunky just in case every part of that thing has proper parts�, and

since points do not have proper parts, it seems that the gunkologist conception

of the continuum implies that there can be no di�erence between open (or half-

open) and closed intervals or between open and closed regions. And then, since

the pointillists can speak of such a di�erence, it follows that there is a real and

irreducible di�erence between Gunkology and Pointillism.

The argument is wrong, because though it is true that regions in the Region-

Based Theory are originally neither open nor closed, we can yet speak (as we

did above) of that which is the di�erence between open and closed regions

according to the Point-Based Theory. For instance, an in�nite set of regions of

SR that exhausts completely a given region (cf., for instance, the way in which

the axiom (ASR9) is introduced above) is exactly that which is an open region

in SP , while, in contrast to such an in�nite set of regions, the single region itself

that is exhausted by the given set of regions, though originally neither open nor

closed, turns out to be exactly that which is a closed region in SP .

It is important to note that the di�erence between closed and open regions in

SR depends on the presence of supervening entities in its model. But the same

is true of SP , because the regions supervene on points as on basic elements of

its model. So, the di�erence between closed and open regions is by no means

more basic in SP than it is in SR.

23See Artzenius and Hawthorne (2005).
24Ibid, p. 443.
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Probably, the strongest intuitive appeal of Arntzenius' and Hawthorne's No-

Zero Assumption consists in the fact that in SP we can get a topologically non-

homeomorphic �gure by dropping out one single point from a given �gure. For

instance, if we drop out one single point from a set of points that makes up a

circle, we get an open line, which is topologically non-homeomorphic with the

given circle. This seems impossible to do in SR. But, unexpectedly, it is exactly

that which we managed to do above by using the �tricky device�, when we were

de�ning a circle within SR via the set of the lines such that just one point of

each of them is dropped out (see diagram 23 and further on).

The wrongness of the Argument of Arntzenius' and Hawthorne's is based

on the false belief that due to the fact that points are not elements or parts of

gunky continua, they are simply non-entities in the gunkologist conception of

the continuum. That's why Arntzenius thinks that Aristotle held that �there are

no instants in time�,25 as well as no points in space 26 which is straightforwardly

wrong. When speaking of Zeno's Axiom,27 Aristotle did accept that entities of

a higher dimension do not consist of entities of a lower dimension,28 but he ex-

plicitly rejected that they are nothing.29 It was perhaps Zeno30 who, by arguing

against points as constituents of the magnitude, wanted to pass from �Nothing

is added� (because nothing has changed in view of the increasement of a given

segment or region) to �That which is added is nothing�31, but Aristotle rejected

this second reading of τὸ προσvγινόμενον οὐδέν ἐσvτιν (�nothing is added�)32 and

accepted that instants, points, lines and surfaces, though not entities in the

primary sense (πρῶτον) still exist in a secondary sense.33 They exist as limits,

25See Arntzenius (2000), p. 187. and p. 202.
26See See Arntzenius (2012), Ch. 4.
27See Aristotle (1831), Met. 1001 b 7.
28Ibid loc. cit, 1001 b 7.
29Ibid loc. cit, 1001 b 7 �.)
30
DK B 2.

31See Fränkel (1942), p. 199 �.
32
DK B 2 13.

33For more about this, see Arsenijevi¢, �¢epanovi¢ and Massey (2008), pp. 23 �.

39



or, in modern terminology, they supervene on the entities whose limits they are.

But independently of Zeno and Aristotle, if we got rid of entities supervening

on regions in the models of SR, we could not speak of lines and regions in the

models of SP as well, because in SP we have only points as the elements of the

basic set and not sets of points. The power set of the elements of the domain of

SP as well as its elements are not the elements of the domain itself. That's why,

in order to see clearly that there is a complete symmetry between SP and SR in

view of supervening entities, it was so important to formulate the axioms of SP

and SR in a pure Hilbertian manner, by letting variables range over individuals

only, as we have done above.

So, all in all, we should accept that Gunkology and Pointillism are mutually

supervening models of the Region-Based and the Point-Based Theory as two

only trivially di�erent theories of the two-dimensional continuum.
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