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Abstract Not only that the theorem which Löwenheim proved 1915 was the first big
result in what we now call Model Theory, but, primarily due toSkolem, who pro-
foundly analyzed and understood the significance of its far-reaching consequences,
the Löwenheim-Skolem Theorem made also a revolutionary impact on the history
of the twentieth century mathematics, and philosophy of mathematics in particular.
Among the consequences, the most disastrous were those thatconcerned Hilbert’s
categoricity demand and Cantor’s concept of cardinality. In this article, it is argued
that though it should be admitted that the first group of consequences, related to the
possibility of non-standard models, clearly pointed to theexpressive weakness of
the (first-order) language in which, in the first three decades of the last century, the
main mathematical theories were expected to be formalized,this lesson concern-
ing language was only the first part of the story. The need of re-investigation of the
concept of relational structure, and the concept of cardinality in particular, became
acute only in view of results of Paul Cohen, Solomon Fefermanand Azriel Lévy
in the seventh decade of the century. It is shown how the relativity of cardinality is
to be understood and why, instead of being attributed to setsas such, it should be
rather attributed to sets as basic sets of relational structures. It is also shown that,
if properly understood, the relativity of cardinals may be relevant not only for the
philosophy of mathematics but for metaphysics as well.
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1 The historical philosophico-mathematical background within
which the Löwenheim-Skolem Theorem appeared

1.1 The Relation Externalism

In his Intellectual Biography [30, Ch. V], Bertrand Russellnamed the year 1889 as a
turn, which he relates not only to his own philosophical development but also to the
beginning of an era, in which, contrary to the opinion of Leibniz and Hegel, relations
between objects were started to be treated as equally real asand not reducible to the
properties of objects between they hold. For instance, ifa andb are two objects,
thena andb plus a relation holding between them make up a relational structure
that is equally real asa andb themselves, and in addition—and this is a consequence
particularly important for our present purposes—objectsa andb would remain the
very same objects if they ceased to stand in a given relation and started to be in a
different relation.

1.2 Referring to objects, properties and relations according to the
theory of meaning holism: Frege, Wittgenstein and Hilbert

Frege was the first who explicitly introduced the theory of meaning holism by stating
that a concept is something unsaturated [13, p. 24] [16, I.1.pp 33–34], which can
become a reference only by being ascribed to an object. So, for instance, if the
concept horse occupies the place of the grammatical subjectin a sentence, it does
not function as a concept [14].

As for the way in which we refer to objects, Frege applied the difference between
sense and reference (SinnandBedeutung) in order to show that we normally, if not
always, refer to an object through some mode of its presentation [15, pp. 57, 62, 67].
So, for instance, ‘the Morning Star’ and ‘the Evening Star’ are two different names
due to the fact that they represent two different ways in which we refer to Venus, but
they have the same reference, since they both refer to one andthe same planet. One
might raise the question about the name ‘Venus’, since it seems that, contrary to ‘the
Morning Star’ and ‘the Evening Star’, ‘Venus’ refers directly to Venus. It is perhaps
possible to say that ‘Venus’ is actually a shorthand for, say, ‘the second planet in the
Solar system’, being as such also a mode of presentation of the very same object to
which ‘the Morning Star’ and ‘the Evening Star’ refer. But there are cases in which
there is nothing like ‘Venus’ in the given example. ‘The centre of the circle inscribed
in an equilateral triangle’ and ‘the centre of the circle circumscribed about the same
equilateral triangle’ are two different ways of referring to one and the same point,
but there is no name that would refer directly to it. And if we refer to this point by
‘the centre of gravity’, it is clear that this is just anothermode of presentation of the
same object which ‘the centre of the circle inscribed in an equilateral triangle’ and
‘the centre of the circle circumscribed about the same equilateral triangle’ refer to.
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Wittgenstein radicalized the theory of meaning holism by stating that names have
no reference at all outside sentences in which “state of affairs” are stated [40, 3.3],
for the world is, according to Wittgenstein, “the totality of facts, not of things” [40,
1.1].

And finally, it was only Hilbert who stated that there is no reference, either in
view of names (constants or, indirectly, individual variables) or of relations (rela-
tion constants) or of the statements (about relations holding between the objects
which the constants refer to or the variables range over) outside a whole formal
theory. So, according to Hilbert, it is only a whole system ofaxioms (a formal the-
ory) that implicitly defines objects and relations which thetheory is about [20, 21].
Consequently, the whole formal theory gets its reference through a simultaneous
interpretation of its all basic symbols and well-formed formulae, and this reference
is a relational structure in which the theorems of the theoryare satisfied, i.e. true.

1.3 Consistency, Completeness and Categoricalness

According to Hilbert’s Programme, the ideal formal system should be consistent,
complete and categorical [12, Ch. V,§4].

Syntactically, an axiom system is consistent if an only if there is no formula
A of the system for which bothA and its negation can be proved. Semantically,
a system is consistent if there is an interpretation such that its axioms are true.
As a consequence, later formulated as a theorem of the Model Theory, an axiom
system (a formal theory) is consistent if and only if it has a model. So, in order to
prove that a system is consistent, it would be sufficient to show that it has a model.
However, for doing this, one should have a well-establishedmeta-theory concerning
the existence of a model. That’s why Hilbert wanted to have a purely formal proof
of the consistency without relating it to a model. However, in many interesting cases
such a proof is not of elementary nature and requires always stronger and stronger
theories, as it follows from Gödel’s Second Incompleteness Theorem [18]. This
problem of Hilbert’s Programme is, however, irrelevant forour main concern.

The question concerning syntactical completeness is indirectly relevant to our
topic. A formal system is syntactically complete if and onlyif there is no pair of
sentences—a sentence and its negation—such that neither ofthe two sentences is a
theorem of the system.

The demand concerning the categoricalness of a system will be of crucial im-
portance for our main concern. An axiom system (a formal theory) is categorical if
and only if all its models are isomorphic, i.e. if and only if all the relational struc-
tures in which the system is interpretable are such that there is a structure preserving
one-one mapping between the elements of their basic sets.
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1.4 The set equipotency and higher-order infinities

One of the central things that are going to be questioned by the Löwenheim-Skolem
Theorem concerns Cantor’s theory of higher-order infinities, which is based on the
conception of the power of a set [12, pp. 95ff].

Two finite sets are equipotent if and only if all the elements of one of them can
be brought into 1−1 correspondence with all the elements of the other one. That’s
why, for instance, the set of four people has the same power asthe set of four apples.
By generalizing this idea, two infinite sets are also said to be equipotent if and only
all if the elements of one of them can be brought into 1− 1 correspondence with
all the elements of the other one. Now, a set has less power than some other set
if and only if all its elements can be brought into 1− 1 correspondence with the
elements of some proper subset of the latter set but, at the same time, there are
not enough elements of the former with which all the elementsof the latter could
be brought into 1−1 correspondence. That’s why a set of five apples has a greater
power than a set of four people. And that’s also why, according to several proofs that
Cantor has offered, the set of natural numbers is equipotentwith the set of rational
numbers but has a less power than the set of real numbers. Cardinal numbers are
numbers that denote set powers. So,ℵ0 denotes the power of all the infinite sets
that are equipotent with the set of natural numbers, and these sets are the weakest
infinite sets. Cardinal numbersℵ1,ℵ2,ℵ3, . . . denote infinite sets of always greater
and greater power. Cantor had stated and believed to have proven [5, p. 333] that
the power of the set of real numbers isℵ1, namely, that there is no infinite sets
whose power would be greater than the power of the set of natural numbers but
lesser than the power of the set of real numbers, but since hisproof has turned out
to be inconclusive, this statement of his was later called the Continuum Hypothesis.

1.5 The set orderings

In order to get a relational structure, we have to start with abasic set and then define
at least one relation on it. The most important relation is the ordering relation, i.e.
either< or≤, where the latter can be defined via the former and the identity relation.
However, it is important to notice that, by starting with different basic sets, we can
get different orderings—in accordance with the Cantorian procedure—by using the
allegedly same ordering relation. So, for instance, the three relational structures,
〈N,≤〉, 〈Q,≤〉, 〈R,≤〉, whereN, Q andR are the set of natural numbers, the set
of rational numbers and the set of real numbers, respectively, are not ordered in the
same way: the first structure is discrete, the second one is dense but not continuous,
and the third one is continuous.

Concerning the order of〈N,≤〉, it will be very important, for the understanding of
an apparent paradox of the Löwenheim-Skolem Theorem, that, in the meta-theory,
the ordering relation of the standard model can be introduced in two seemingly
equivalent ways, whose difference, however, can be exemplified by using a model
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of Non-Standard Arithmetic. Namely, since the well-order of the intended model is
well-founded and total, it seems that any of the following two pairs of conditions
is sufficient for its definition. We can either stipulate that(1) there is an element
which is the minimal element of the structure; and that (2) for any element, there
is a unique element that is his immediate successor, or, alternately, we can retain
the first condition and add: (2’) any non-empty subset of the basic set has a unique
minimal element. But, as we shall see below (see 3.2), there are structures in which
conditions (1) and (2) are satisfied, whereas (2’) is not. This means that (1) and (2)
are not sufficient for defining, in a categorical way, the order of natural numbers in
Standard Arithmetic, whereas (1) and (2’) are.

As for the difference between〈Q,≤〉 and〈R,≤〉, it consists only in the fact—
which Cantor held to be the first who had discovered and definedit clearly [5, p.
190]—that while each element of〈Q,≤〉 is an accumulation point of an infinite
number of elements, it is true only in〈R,≤〉 that each accumulation of an infinite
number of elements has as its accumulation point the elementthat is an element of
the basic set itself. The lesson, which will be very important for an interpretation of
the Löwenheim-Skolem Theorem, is that the allegedly same ordering relation func-
tions differently in view ofN, Q andR, so that the difference between structures
which are discrete, dense but not continuous, and continuous depends on how they
are structured partly independently on how they are orderedaccording to the≤ re-
lation. In particular, if a structure is well-ordered according to the second definition,
its basic set is countable, but it is a question, as we shall see below, whether it is so
in the case in which a structure is well-ordered according tothe first definition only.

And finally, from the Hilbertian point of view, the difference between discrete,
dense but not continuous, and continuous structures is to beobtained only through
different axioms defining implicitly the meaning of the≤ relation. This means that,
according to the Hilbertian meaning holism, the≤ relation cannot be said to be the
same in each of the three cases. More concretely, though it might seem that the same
ordering relation holds between elements of the otherwise differently structured el-
ements of discrete, dense but not continuous, and continuous structures, the very
difference between these structures is based on the fact that the ordering relation is
implicitly defined in three different ways relating to thesethree structures.

1.6 Intuitionism and Platonism

Though Intuitionists were not directly involved in the discussion concerning the
Löwenheim-Skolem Theorem due to the fact that the Intuitionist Programme re-
mained untouched either by the Theorem itself or by its consequences, the concept
of constructability [12, pp. 61, 104, 108], though not in thesense in which Intuition-
ists understand it, will appear in some important examples concerning the problem
of changing cardinalities [25].

Intuitionists reject the Cantorian concept of the actual infinity and use only the
Aristotelian concept of the dynamic (or potential) infinite. So they always start with
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a finite number of constructed objects that may then get greater and greater un-
boundedly but never becomes actually infinite [4, pp. 270ff.]. This treatment en-
ables them to prove various statements about the objects introduced in such a way
whenever they have a recursive control over what they speak about and an induc-
tive way to prove a theorem, but they do not allow us to speak ofinfinite sets or
classes as ‘finished entities’ [4, p. 433] but only of “spreads” as entities “in statu
nascendi” [39, p. 52]. For instance, we may speak of natural numbers as a species,
without restricting our discourse to a finite number of them,and can also prove, by
using mathematical induction, that any of these numbers must be odd or even, but
we mustn’t speak of “the set of all the natural numbers (whosecardinal number is
ℵ0).”

An important consequence is that we cannot use the Weierstrassian concept of
real numbers according to which any complete decimal expansion defines a unique
real number. We may say, for instance, that 0,33..., where 3 is supposedly going
to occur at any place of the decimal expansion, defines the unique number, i.e.13,
but we mustn’t take that the decimal expansion ofπ definesπ as the unique real
number, because, firstly, there is no recursive way according to which such an ex-
pansion would be defined, and, secondly, there is no mathematical object such as
the complete infinite decimal expansion.

Due to the given restriction under which one is allowed to speak of the existence
of mathematical objects and to prove the existence of their properties and relations
holding between them, the use of many classical logical principles and derivation
rules is also to be restricted. It is so in the case of the principle of excluded middle,
the counterposition, the double negation, the reductio ad absurdum and so on. In
particular, this prevents all the Cantorian proofs concerning the existence of various
types of infinity and the uncountability of the set of real numbers.

Now, I shall call Platonists all those who do not accept the intuitionist rigors
concerning the existence of mathematical objects and theirway in which the theo-
rems are only allowed to be proved. This means that Platonismwill be taken in a
much broader sense than as denotation of the mathematical programme contrasted
to Logicism, Intuitionism and Formalism. In particular, Hilbert’s Programme will
not be contrasted to Platonism, since the rigor of Hilbert’sfoundation of mathemat-
ics concerns the syntactical finitism and recursive controlthat should govern the
introduction of basic symbols and formation and derivationrules [23, pp. 137ff],
which is, as such, not directed against the transfinite mathematics that lies on the
semantical part of a formal theory. As Hilbert put it himself, “No one shall drive us
out of the paradise which Cantor has created for us” [23, p. 141].
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2 The Löwenheim-Skolem Theorem and its generalization

2.1 What is the L̈owenheim-Skolem Theorem about?

The essential statement of what is now called the Löwenheim-Skolem Theorem as
well as its proof—in spite of some errors and slopps [38, p. 156]—are to be found
in Löwenheim’s famous paper [26]. However, due to the fact that Skolem, in his
four papers [31, 32, 34, 35], removed all gaps and omissions from Löwenheim’s
proof, got rid of any use of the Axiom of Choice, strengthenedand extended the
Theorem, analyzed profoundly its meaning, formulated the Theorem related Para-
dox and offered its first resolution, his name was later rightly attached to the name
of Löwenheim when referring to the Theorem itself. Some go even further on and
call it the Skolem-Löwenheim Theorem [12, p. 302].

The Theorem is nowadays highly estimated as the first great result in what was
later called the Model Theory [38, p. 154], viz. as a contribution that proved some-
thing substantially important and seemingly paradoxical about the relation between
a formal theory and its interpretation.

Since, perhaps contrary to, say, Gödel’s Incompleteness Theorem, the under-
standing of the Löwenheim-Skolem Theorem and its consequences represents a
problem per se that does not depend essentially on the understanding of its proof,
we shall turn directly, after giving its main formulation, to the clarification of its
meaning.

2.2 The main formulation of the L̈owenheim-Skolem Theorem and
the straightforward meaning of its strong version

Löwenheim’s original formulation [26] was about a first-order sentenceσ that has
a model. However, sinceσ can be a conjunction, we may speak, instead ofσ , of a
setΣ of first-order sentences. In particular,Σ can be the set of axioms of a formal
theory. As for the model, since no qualification is indicated, the basic set of the
relational structure the Theorem is about can be an infinite set of any cardinality
whatsoever.

Theorem 1. If Σ has a model whose basic set is infinite, thenΣ has a model whose
basic set is countable.

Let us explain the straightforward meaning of the Strong Version of the Theorem,
where, given thatA is the basic set of the original structure andB the basic set of a
countable modelB, B⊆ A. Let Sbe a structure which consists of (1) an infinite set
A whose cardinal|A| is greater thanℵ0, and (2) a finite or denumerable number of
relationsR1,R2, . . . defined on it. Then, there is a structureS′ that consists of (1) the
basic setB whose cardinal isℵ0, and of (2) the relationsR′

1,R
′
2, . . . that are just the

relationsR1,R2, . . . of S restricted to the setB, so that for every sentenceσ of the
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first-order language which corresponds toS, i.e., whose extra-logical symbols are
just relation-symbols which refer to the relationsR1,R2, . . . of S, σ is true inS′ if
and only ifσ is true inS. In particular, ifT is a first-order theory andS is a model
of T, thenS′, too, is a model ofT.

2.3 The generalized versions of the Löwenheim-Skolem Theorem

In 1928, Tarski presented in his seminar a form of what is now called the Upward
Löwenheim-Skolem Theorem [38, p. 160]. However, this result was never published
and was only mentioned in the editor’s note of Skolem’s paperthat appeared six
years later [36]. So, the proof is to be found only in the famous paper of Malcev
[27].

Theorem 2. If Σ is countable and has a model whose basic set is infinite, thenΣ
has a model in each infinite power greater than the power of theoriginal basic set.

Since the Theorem can be generalized so as to state thatΣ has a model in each
infinite power lesser than the power of the original basic set—which is its version
called the Downward Löwenheim-Skolem Theorem—the most generalized form
states that:

Theorem 3. If Σ is countable and has a model whose basic set is infinite, thenΣ
has a model in each infinite power.

However, since, from a philosophical point of view, the original version of the The-
orem is sufficient for the formulation and understanding of the most intriguing ques-
tions and the most interesting examples related to its consequences, we shall in what
follows focus our attention to this form of the Theorem and refer to it, unless neces-
sary, by using its name without qualification.

3 The far-reaching consequences of the L̈owenheim-Skolem
Theorem

3.1 The general problem concerning Hilbert’s Programme caused
by the L̈owenheim-Skolem Theorem

As it is said above (2.1.), the Löwenheim-Skolem Theorem concerns the relation be-
tween a first-order formal theory and its interpretation. Now, we have to remember
that at the time at which the Löwenheim Theorem appeared oneof the main concern
of mathematicians was to formulate, as first-order formal theories, the set theory, the
theory of elementary arithmetic, the theory of real numbersand of the continuum
in general (within the formalized set theory or independently of it). These theories
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were expected to be in accordance with Hilbert’s Programme,i.e., to be consistent,
complete and categorical, expressing formally and unequivocally all the truths dis-
covered informally or semi-formally in the respective mathematical theories, i.e.,
in the Cantorian set theory, the Fregean or Dedekindian Arithmetic and in the gen-
eral theory of the continuum applicable in the theory of realnumbers as well as
in geometry. For this “paradise state,” in which a real breakthrough concerning the
formal foundation of the most important mathematical theories was expected, the
Löwenheim’s Theorem and Skolem’s analysis of its consequences represented a
real disaster.

In the first place, the Löwenheim-Skolem Theorem implies the existence of non-
intended models of all the mentioned formal theories that are non-isomorphic with
the intended models. This means that these theories are necessarily not categorical.

The non-categoricity of a theory means that we cannot formally distinguish what
is distinguishable in the corresponding informal or semi-formal theory. In particu-
lar, the cardinality becomes something relative [11, pp. 108ff], for, according to the
generalized version of the Löwenheim-Skolem Theorem, thestructure in which the
theory is interpreted can be taken to be of any cardinality whatsoever. This relative-
ness of the cardinals was very disturbing both to Skolem and von Neumann [32,
pp. 223ff] [28, pp. 239–240]. For von Neumann, it suggests a kind of unreality of
cardinals and therefore serves as the argument in favour of Intuitionism.

And finally, one can make one step more, which Skolem did, and raise the ques-
tion about a possible paradox [33], since, as we shall see, a sentence stating the ex-
istence of uncountable sets can be true after being interpreted in a structure whose
basic set is denumerable.

3.2 The non-categoricalness and the formal indistinguishability of
the informally distinguishable

In order to illustrate the problem of the non-categoricity of a formal theory, I shall
start with the formal theory of elementary arithmetic as thesimplest and most obvi-
ous case.

The objects of the basic set of the relational-operational structure that is the in-
tended model of the fully formalized elementary arithmeticare numbers 0,1,2,3, . . .
for which the so-called Archimedes Axiom holds and which areall finite in spite of
the fact that there is an infinite number of them. As it is standardly defined, “an
Archimedean model of arithmetic is a model in which for everynumberN and for
every [positive] numberε there is a finite numbern such thatε + ε + ...+ ε > N,
whereε is takenn times” [1, pp. 926f].

Let us imagine, however, a structure that does not differ from the intended model
in any other respect except that in it the Archimedes Axiom does not hold. This
means that in the basic set of this structure, in addition to finite numbers, there
are numbers that are infinite in the sense that they cannot be reached in a finite
number of steps by starting from any number that is finite in the sense in which all
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members of the basic set of an Archimedean model are finite. Itis evident that this
non-Archimedean structure is not isomorphic with the structure that is the intended
model of the formal theory of elementary arithmetic.

However, though in such a non-Archimedean model there are numbersa andb
such that there is non that is finite and such thata×n≥ b, the structure supposedly
does not differ from an Archimedean structure in no other respect. So, every number,
be it finite or infinite, has its unique immediate successor.

Now, given that there is an infinite number of infinite numbersjust as there is an
infinite number of finite numbers, the fact that there is no maximal element of the set
of finite numbers in the given non-Archimedean structure is completely analogues to
the fact that there is no minimal element of the set of infinitenumbers. This means,
in effect, that there is an infinite subset of the set of elements of the basic set of
the given non-Archimedean structure that does not have a minimal element, which
means, consequently, that, in view of two pairs of conditions cited in 1.5, conditions
(1) and (2) are satisfied, whereas the condition (2’) is not.

One would certainly like that, in accordance with Hilbert’sprogramme, the for-
mal theory of elementary arithmetic grasps the difference between the Archimedean
and the Non-Archimedean arithmetic so that if the former is amodel of the formal
theory, the later is not. Unfortunately, this cannot be doneif the formal theory is a
first-order theory.

The problem is that the axioms that would be formulated in thestyle of Dedekind
and Peano do not enable us to preclude the existence of infinite (or hyper-finite)
numbers in the basic set of the intended model of the theory. For instance, it will
be true that for any twoa andb such that 0< a anda < b, it holds that there isn
such thata×n≥ b, independently on whether we interpret the formal theory inan
Archimedean or in a Non-Archimedean structure, for ifb is a hyper-finite number,
n can be a hyper-finite number as well. One could try to impose a limitation to
standard numbers, as Fraenkel did in a similar context [10, pp. 233–234], by adding
the Axiom of Restriction to Peano’s arithmetic, say of the form

∀x[x= 0∨x= 0′∨x= 0′′∨ ...],

but this expression is of infinite length and is, therefore, not legitimate within the
framework of the standard first-order theory. And there is noway of reformulating
it within the standard framework.

If one tries to use the fact that in the non-Archimedean structures there are infinite
sets that have no minimal element whereas in the Archimedeanstructures it is not so
in order to make the difference between the two, this would also lead nowhere, since
the variables of the formal theory of arithmetic range over the numbers and not over
their sets. To express the difference, one would need a second-order language.

All in all, there is no way to avoid the non-categoricalness by interpreting the
first-order formal theory of arithmetic in such a way that it becomes also possible to
distinguish formally what is distinguishable in the meta-theory.
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3.3 Skolem’s Paradox

It was only in 1928 that Hilbert and Ackermann formulated quite precisely the con-
cept of the completeness of a logical syntax with respect to agiven semantic theory
[22]. Only two years later, Gödel was quick to prove, in his doctoral dissertation, his
famous Completeness Theorem [17], which is now called simply Gödel’s Complete-
ness Theorem, in contrast to his Incompleteness Theorem [19], which concerns the
question of the syntactical incompleteness (see 1.3 above). Gödel’s Completeness
Theorem says that:

Theorem 4.A sentenceσ of a first-order formal theoryΣ is true in all the models
of Σ if σ is a theorem ofΣ .

By using this theorem, it is easier to reach the point of Skolem’s Paradox than by
the way in which it was done by Skolem himself, who, for this purpose, could use
only the Löwenheim-Skolem Theorem itself.

By Gödel’s Completeness Theorem, if a first-order formulation of the Zermelo-
Fraenkel Set Theory (ZF) is consistent, then each theorem ofZF is true in any of
its models. Now, by the Löwenheim-Skolem Theorem, one of the models ofZF
is denumerable. LetS be such a model and letA be the basic set ofS, andR a
binary relation formulated inZF and interpreted inS as∈ defined onA. For the
sake of convenience, let us take that, if a memberc of A stands in the relationR to
a memberb of A, c is a member ofb in S, i.e., we shall speak ofb as if it were the
set{c | cRb} (of all the membersc such thatcRb). In addition, let us denote byω
the only memberx of A that satisfies inSthe formula ‘x is the least infinite ordinal.’
Now, on the one hand, it is a theorem ofZF that there are uncountable sets, so, (1)
the setA must have a membera such that it is true inSthata is not denumerable. On
the other hand, however, (2) all the membersb of a in S are members ofA, which
is supposedly a denumerable set. (1) and (2) are seemingly inconsistent, and this is
what is known as Skolem’s Paradox [12, p. 303].

Since, as mentioned above, (1) and (2), taken together, seemto imply the rel-
ativization of the cardinality, Skolem’s Paradox is sometimes also understood as
referring to this fact, if, namely, one is prone to believe, as von Neumann was, that
the relativeness of cardinality is inconsistent with the way in which the very concept
of cardinality is to be understood.

4 The positive reactions to the L̈owenheim-Skolem Theorem: to
blame the language or to re-investigate structures?

Confronted with all the unpleasant consequences of the Löwenheim-Skolem Theo-
rem and of Skolem’s Paradox in particular, one can try, in view of the fact that the
Theorem concerns the relation between a formal theory and its interpretation, to find
one of the following two ways out of the situation: to blame the first-orderness of
the language in which formal theories are supposedly formulated and use a stronger
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language to formulate them or to re-investigate the very structures the theories are
about in order to re-define at least some of the key concepts underlying their under-
standing. Or perhaps, as the third possibility, one can find that it is necessary to do
both.

4.1 The weakness of the language

As a consequence of the so-called linguistic turn in philosophy that happened at
the beginning of twentieth century, one could reasonably expect that the first option
was ready to be endorsed, both by mathematicians as well as byphilosophers. A
general lesson of the linguistic turn has been that very many, even if not all, problems
and apparent paradoxes which we are confronted with by dealing with reality have
their origin in the language we use to speak of it. Isn’t it so also in the philosophy
of mathematics, where, at those days, the stubborn practiceto stick to first-order
theories was nearly canonized?

The idea of blaming the language of formal theories for the disastrous conse-
quences of the Löwenheim-Skolem Theorem may arise quite naturally by analysing
the informal or semi-formal theories themselves which the main formal theories
were to formalize. The point is that the axiom systems used bymathematicians were
formulated within theories—such as informal set theory in the first place—which
were essentially second-order theories, so that one had indeed categorical axiom
systems for natural numbers theory, for real numbers theoryand for geometry. It is
a bit strange that this fact had not been earlier anticipatedas a possible source of the
problem that later emerged as a consequence of the Löwenheim-Skolem Theorem.
Let me give an example.

As mentioned in 1.5, Cantor was the first who clearly realizedthat there are two
conditions which have to be met if a structure is to be continuous. A set of elements
makes up a continuum if and only if (1) it is perfect, and (2) coherent (zusam-
menḧangend) [5, p. 190]. The first condition is easy to formulate within afirst-order
language, because the density axiom, if added to the rest of axioms defining a lin-
early ordered structure, implies that in any model there is an infinite number of
elements accumulating about any of its elements. So,〈Q,≤〉as the standard perfect
structure, is implicitly defined by the following eight axioms:

(1) ∀αn ¬αn < αn

(2) ∀αl∀αm∀αn((αl < αm∧αm < αn)→ αl < αn)
(3) ∀αm∀αn(αm < αn∨αn < αm∨αm = αn)
(4) ∀αl∀αm∀αn((αl = αm∧αl < αn)→ αm < αn)
(5) ∀αl∀αm∀αn((αl = αm∧αn < αl )→ αn < αm)
(6) ∀αm∃αn αm < αn

(7) ∀αm∃αn αn < αm

(8) ∀αm∀αn(αm < αn →∃αl (αm < αl ∧αl < αn))

where the last axiom is the density axiom.
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However, the second condition cannot be formulated within astandard first-order
theory. Namely, in order to say that the basic set is not only perfect but also coherent
(zusammenḧangend), we have to mention explicitly an infinite number of elements,
for, according to Cantor, a set is coherent only if any accumulation of an infinite
number of elements has the accumulation point that is an element of the basic set
itself. In other words, any infinite accumulation from the left to the right must have
the least upper bound that is an element of the basic set itself just as any infinite
accumulation from the right to the left must have the greatest lower bound that is
an element of the basic set itself. This can be expressed onlyin the second-order
language or in the extended first-order language, which is now known as the infini-
tary language Lω1ω1. For the reasons that will be mentioned below (in 5.4), let me
formulate the two necessary axioms in the language Lω1ω1 [2]:

(9) ∀α1∀α2 . . .∀αi . . .

(∃β1
∧

1≤i<ω
αi < β1 ⇒∃γ1(

∧
1≤i<ω

αi < γ1∧¬∃δ1(
∧

1≤i<ω
αi < δ1∧δ1 < γ1))

(10) ∀α1∀α2 . . .∀αi . . .

(∃β1
∧

1≤i<ω
αi > β1 →∃γ1(

∧
1≤i<ω

αi > γ1∧¬∃δ1(
∧

1≤i<ω
αi < δ1∧δ1 > γ1)))

(whereαm > αn ↔de f αn < αm). Notice that the antecedents in these two axioms
are unavoidable because in〈R,≤〉, which is the intended model of the system rep-
resenting a linear continuum, there are infinite subsets ofR without an upper and/or
a lower bound, so that what we want to say is that if there is an upper (lower) bound
at all, there is also a least upper (greatest lower) bound.

But now, though the above axiom system is formulated in the extended first-
order language, the last two axioms contain infinite conjunctions, which was not
legitimate at the time at which the continuum theory was to beformulated as a
formal theory.

Generalizing the point of the previous example and turning to Skolem’s Paradox
and all the related problems concerning the non-categoricity of formal theories pro-
posed at the time we are speaking about, we can simply say thatthe language used
in the formulation of these theories was blind for making allthe differences express-
ible only in a non-standard language. In particular, this means that, bearing on mind
the meaning of Skolem’s Paradox, there can be a relation between the elements of
the basic set which is uninterpretable as any relation of a given formal theory but
which makes the statement of the uncountability of the basicset true, in spite of the
fact that all the relations envisaged by the theory are such that they make the very
same basic set countable.

So, one might say that the allegedly paradoxical consequences of the Löwenheim-
Skolem Theorem represent nothing else but just a striking example of the weakness
of the first-order language for describing the structures inwhich they are interpreted.

Some mathematicians were ready to accept this as the end of the story. So, al-
ready in 1930, Zermelo formulated the set theory in the second-order language [41].
More than three decades later, Abraham Robinson offered a second-order formula-
tion of the non-Archimedean arithmetic and real numbers theory, which contain
infinite numbers and infinitesimals [29].
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The semantics of the second-order logic is far less clear than the semantics of
the first-order logic and, in addition, many philosophers are reluctant, for various
reasons, to accept the ontological commitments that followfrom the ontology of
classes, properties and relations implied by the second-order mathematics. But this
is not the matter of our concern. So, let us turn directly to the second strategy of
dealing with the consequences of the Löwenheim-Skolem Theorem, which assumes
that the Theorem tells us something important about the veryrelational structures in
which formal theories are interpreted.

4.2 Changing cardinalities: the relativeness of cardinality as a
language-independent property

If the lesson concerning the weakness of the first-order language in view of math-
ematicians’ attempts to use it by trying to formalize informal set theory, natural
numbers theory, real numbers theory, etc. were all that the Löwenheim-Skolem The-
orem contributed to, it would certainly be a big result whichgot rid mathematical
and philosophical community of a prejudice that characterized the naı̈ve and ill-
founded hope of the “paradise state” in the first three decades of twentieth century.
But it would not be what it is now believed to be [11, p. 106]—one of the greatest
results in the history of the twentieth century mathematics, which threw a new light
on some basic concepts of the set theory and the concept of relational structures
in general. The meaning of this latter result became clearlyvisible only much later
through some revolutionary results of Paul Cohen, Solomon Feferman and Azriel
Lévy in the seventh decade of twentieth century. But, before turning to these results,
I shall try to elucidate the main point by analyzing in a more detailed way Skolem’s
Paradox itself and by using a quite simple example.

Those who, by resolving Skolem’s Paradox, stress the weakness of the first-
order formalization of informal set theory for distinguishing cardinalities of dif-
ferent models in which the formal theory is interpretable donot have to stop at this
defeatist conclusion, and normally they don’t. Theexplanationof the blindness of a
formal theory consists in the fact that there can be a relation “invisible” by the theory
which makes a countable model uncountable or an uncountablemodel countable.

As for the first possibility, it is sufficient that one remindsthe example concern-
ing the second Cantor’s condition for the continuity of an ordered structure (see 4.1).
Though, in accordance with Hilbert’s Programme, the difference between the order-
ing relation of only dense and continuous structures shouldbe grasped axiomati-
cally (see 1.5 above), and though this can be done by the use ofthe language Lω1ω1

(as suggested in 4.1), it cannot be done within a standard first-order theory, and it
is exactly the formal indistinguishability between these two ordering relations that
makes it possible that the theorem ofZF about the existence of uncountable sets is
true even if the ordering relation of a structure in which thefirst-order formalization
of ZF is interpreted makes its basic set denumerable.

The second possibility is more intriguing. How could it be that a supposedly
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uncountable model becomes countable? – Let us start with quite a simple case.
Suppose that we have a formal theory interpretable in a structure that is dense but
not continuous. Is this model also countable? The immediateresponse will be: “Yes,
of course! The set of rational numbers is dense, but it is alsocountable.” However
obvious this answer might be, there is a fact that can be easily overlooked, but which
is of crucial importance. We know that there are several functions which define
mappings of the set of rationals in such a way that the set of images is directly
countable. For instance, we can ‘arrange’ the set of positive rational numbers as
follows

1
1 → 1

2
1
3 → 1

4 · · ·
ւ ր ւ

2
1

2
2

2
3 · · ·

↓ ր ւ
3
1

3
2 · · ·

ւ
4
1 · · ·
↓
· · ·

and then pick them up following directions indicated by arrows, obtaining the 1−1
mapping onto the set of natural numbers, which is directly countable. Since knowl-
edge implies truth, the positive answer to the question of countability of rational
numbers seems self-evident. But this “self-evidence” may hide the fact that, inde-
pendently of our knowledge or ignorance, it is yet the case that the model is denu-
merable only because there are mappings such as the given one. If, counterfactually,
we hadn’t known that there are such mappings, it would have been far from evident
that it is so.

The point could be considered philosophically perverse if there were no other,
much more interesting cases in which the same phenomenon appears. The most
interesting one concerns the denumerability of the set of real numbers.

As his most famous result, Cohen proved 1963 that ifZF is consistent, it remains
consistent when the Axiom of Choice and the Generalized Continuum Hypothesis
are added [6, 7]. Using the model of Cohen’s type applied in this proof, Feferman
and Lévy proved that, by omitting the Axiom of Choice, “ifZF is consistent, it
stays consistent after addition of the following axiom: theset of real numbers is
a denumerable union of denumerable sets” [9, p. 593].1 And then, since it can be
proved that the set of elements of a denumerable union of denumerable sets is itself
denumerable, it follows that, under given assumptions, theset of real numbers is
denumerable!

Ironically, the fact that the set of elements of a denumerable union of denumer-
able sets is itself denumerable can be proved by the very samemethod that I have
just used above for showing that the set of rational numbers is denumerable, and
which was originally used by Cantor himself! Namely, letB1,B2,B3, . . . be mem-
bers of a denumerable union anda11,a12,a13, . . . elements ofB1,a21,a22,a23, . . .

1 See also [8, p. 146] and [24, p. 142]



16 Miloš Arsenijević

elements ofB2,a31,a32,a33, . . . elements ofB3, and so on. Now, by “arranging” the
elements ofB1,B2,B3, . . . as follows

B1 a11 → a12 a13 → a14 · · ·
ւ ր ւ

B2 a21 a22 a23 · · ·
↓ ր ւ

B3 a31 a32 · · ·
ւ

B4 a41 · · ·
↓
· · ·

and picking them up following directions indicated by arrows, we obtain the 1−1
mapping onto the set of natural numbers, which is directly countable.

Further elucidation concerning the significance of the omission of the Axiom of
Choice lies outside the scope of this paper. So, we shall turndirectly to general
philosophical aspects concerning the mentioned consequences of the relativization
of cardinalities.

5 Concluding logico-ontological considerations

Even for the hardest Platonists, the realm of higher order infinities transcending
2ℵ0, however interesting it may be for mathematicians, seems unsurveyable from
an ontological point of view. So, by dealing with philosophically interesting con-
sequences of the Löwenheim-Skolem Theorem and Skolem’s Paradox in particular,
we shall focus our attention to discrete, dense and continuous structures that are
sufficiently close to reality in a common sense of the word, but which involve, at the
same time, the relevant difference between the countable and the uncountable.

5.1 Cardinality as a non-absolute property

As we have just seen (in 4.2), the resolution of Skolem’s Paradox that has had the
most important impact in mathematics demands the relativization of cardinalities.
This relativization seems to be in a blatant contradiction with the very concept of
cardinal number as it was originally defined by Cantor (see 1.4). Though the status
of the Continuum Hypothesis allows us to take that 2ℵ0 = ℵ1 but also that it is not
so (some mathematicians have suggested that we should rather take that 2ℵ0 = ℵ2

[37]), this does not mean that we may assume both to be the caseat the same time.
So, we need some reconceptualization of cardinality if it should be allowed to be
non-absolute.
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Now, the above consideration and the cited examples suggesta clear way in
which the concept of cardinality is to be re-defined. Insteadof speaking of the cardi-
nality of a set as such, we should rather speak of the cardinality in a qualified sense,
namely, of the cardinality of the basic set of a structure. Inthe literature, it is quite
common to speak of the countability or uncountability of a model. This is not cor-
rect strictly speaking, but it can be accepted as afaçon de parler. It is yet a set which
is countable or uncountable, but it is always a basic set of a structure, which also
contains relations, and the countability or the uncountability of such a set depends
essentially on relations defined on it. So, instead of simplysaying that a set is count-
able, we should always say that it is countable in view of thisor that relation. Then,
it becomes consistent to say that a set is uncountable in viewof this but countable in
view of that relation. Even the simplest example shows what this means. The set of
rationals is not countable in view of the way in which the rationals are ordered by
the standard precedence relation. But if we order them in a different way, by using
one of the well-known functions, their set becomes countable. However trivial this
may seem, it ceases to be trivial when we turn to real numbers,where under certain
conditions they can be mapped onto a structure in such a way that they start to be
countable (see 4.2). So, as suggested, it is not the set as such which is countable or
countable but the set structured in a certain way.

5.2 Changing cardinalities: relation-dependence without
re-structuring the structures

There is one thing that can be said to remain ambiguous in the just given explana-
tion of the relativity of cardinality. It is said that the cardinality of a set can change
depending on different relations that can be defined on it as the basic set. Can these
different relations be assumed to hold simultaneously in a relational structure? The
question is very important, for if the answer were negative,one could say that, in
fact, one and the same basic set as the set of a relational structure cannotbeuncount-
able and countableat the same time. We should say instead that, if uncountable, it
can only be mapped onto a structure which is countable.

The question is tricky. On the one hand, we want to say that theset of ratio-
nal numbers and (under certain conditions) the set of real numbers are countable.
On the other hand, if we admit that they become countable onlyafter appropriate
re-structuring of their elements, one could say that after such a re-structuring the
elements cease to be rationals or reals and become natural numbers.

I do not see any other way out but to distinguish between two senses of count-
ability, direct and derivative, and say that the set of rational numbers and the set of
real numbers are countable because there is a different structure whose basic set is
directly countable and, at the same time, such that its elements can serve as images
of the elements of the basic set of the original structures. After all, it is a function
that maps all the rationals or reals onto a set of its images that gives the meaning to
the statement that the set of rationals and reals are countable. We mustn’t detach the
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meaning of countability from the existence of such a function, because it is actually
only the set of images that is directly countable. This seemsto be the only way in
which we can continue to speak of rationals as rationals and of reals as reals, and to
say, at the same time, that their sets are countable.

By generalizing the given example, we can say that the relativity of cardinality
concerns the change of cardinality of the basic set of a structure in view of its pos-
sible mapping onto the basic set of a different structure. So, the set of real numbers
does not cease to be uncountable in spite of the fact that there is a model in which
the set of their images is denumerable.

5.3 The world and its substance: relation externalism and the
problem of referring to objects by re-structuring the structures

According to Wittgenstein’s Tractatus, the substance of the world is just the set of
its objects [40, 2.021], whereas the world itself is a complex relational structure
involving all the actual relations between objects [40, 2.022].

Now, I suggested above (in 5.2) that rational or real numberswould cease to be
what they are if they were structured as natural numbers and that this represents the
reason for using their images when speaking of their countability (in a derivative
sense). This seems to be in a direct contradiction to Russell’s relation externalism
(see 1.1), according to which the objects remain what they are after having changed
their relation to other objects. I think that relation externalism fails in this case only
because numbers are not entities such as ordinary objects inspace and time.

Let us speak, however, of the so-called rational points of a line segment, so that
0 refers to the left end-point, 1 to the right end-point,1

2 to the mid-point of the seg-
ment, and so on. Now, if we accept, at leastarguendo, that points are basic elements
of the real world, as Cantor did [5, pp. 275ff], we can imaginea real re-structuring
of the points of the given line segment such that the set of itsformer rational points
becomes directly countable. But in this case we only use rational numbers to pick
out the objects (points) that supposedly exist in reality independently of how we
refer to them, while in the case in which we speak of numbers themselves it is not
so. By using the theory of meaning holism, we can say that we cannot refer to1

2 as
an element of a relational structure by ignoring its position in the given relational
structure. There is nothing like ‘Venus’ that could be used here to refer to1

2 directly
(see 1.2).

The difference between the above two cases—numbers versus points—may be-
come crucial when we try to apply the relativity of cardinality to the analysis of
reality in a sense that is stronger that the sense in which we speak of reality of num-
bers. Namely, it seems that, in view of the possibility of an actual re-structuring of
the continuum, there is a sense in which it could be possible that the cardinal number
of the basic set actually becomesℵ0. And then again, starting from the elements of
such a decomposed continuum as a pure “substance of the world,” God could build
up, in the inverse order, the world such as it actually is. Thepossibility of this sce-
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nario, which is based on the relativity of cardinality, shows that, however complex
the world may be, for its constitution, it might be sufficientthat its “substance” is of
cardinalityℵ0.

5.4 How to apply Hilbert’s Programme in the formalization of
God’s re-structuring the elements of the space-world

As I have just suggested, if the process of changing cardinalities could have been
understood as the process of a real downward decomposition of the world, it should
be also possible to suppose that God, in an inverse process, has structured the real
space-world by starting from a set of its basic elements whose cardinality isℵ0. The
natural question is, then, how we are to proceed when trying to formalize each of the
higher-order structures obtained in the process of God’s re-structuring the world.

If we restrict our attention up to the stage at which one-dimensional continua
have been created, the question will be reduced to the formaldistinction between
discrete, dense and continuous structures. However poor this might seem in view
of other structures envisaged in the transfinite mathematics, it will be enough for
understanding how the application of Hilbert’s Programme would generally look
like.

The first important question concerns language. As we saw above (see 4.1), the
standard first-order language would not do the job. This means that we have to
choose between some of stronger languages. For several reasons, I suggest that we
use the language Lω1ω1 [3]. One of these reasons is that we would not have to add
anything to our basic assumption that the “world substance”is a set of an infinite
number of elements whose cardinal number isℵ0 and would also not have to refer
directly to any set at all. So, the variables will range, during the whole process
of the world construction, only over the elements of one and the same basic set.
The second important reason is that we shall be able to treat any of the theories
formalizing a higher-order structure as a direct axiomaticextension of the lower-
order theory, which will explain the relation between the non-categoricalness and
incompleteness of a theory in an interesting way. This should be one of the most
interesting results concerning the question we are dealingwith.

The second important question concerns the Hilbertian ideathat the difference
between the structures we are dealing with should be a consequence of the difference
in the meaning of the ordering relation, which is to be grasped only axiomatically
(see 1.5). This means that, contrary to Cantor, we do not haveto add anything else
concerning the cardinality of the basic set as such if we find that a model of the
theory formalizing a higher-order structure is non-denumerable, because (as stated
in 5.1) the cardinality of a structure does not concern the basic set as such but its
cardinality in view of a certain relation.

Now, if we want to formalize the linear structure that is onlydense, we shall
naturally add the density axiom to the rest of axioms definingimplicitly a linearly
ordered structure (see 4.1). The problem is, however, that the obtained formal the-
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ory has non-isomorphic models, as we can see by anticipatingthe next step of God’s
re-structuring the world. Moreover, the models will differjust in view of their car-
dinality!

The standard model of a dense structure is the set of rationalpoints, whose car-
dinal number isℵ0. However, let us start with the unit continuum[0,1] (supposedly
already created by God) and delete, in addition to its two end-points, all the open
intervals(1

3,
2
3),(

1
9,

2
9),(

7
9,

8
9),(

1
27,

2
27),(

7
27,

8
27),(

19
27,

20
27),(

25
27,

26
27), . . . and so on anal-

ogously. Now, since1
3 + 2

9 + 4
27 + . . .+ 2n−1

3n + . . . = 1, the length of the deleted
intervals is metrically equal to 1, while the remaining points make up a discontin-
uum, which is a set metrically equal to zero. This set, which is known as Cantor’s
ternary set, is dense (i.e., perfect in Cantor’s terminology), which is easy to see. But,
since the cardinal number of all the deleted intervals is supposedly greater thanℵ0,
the cardinal number of such a discontinuum should also be greater thanℵ0, which
means that it represents a non-standard model of the system containing just first
eight axioms cited above (in 4.1).

Ignoring metrical differences between the basic sets of thetwo models—the set
of rational points and Cantor’s discontinuum—which can be treated as something
external and irrelevant for the basic isomorphism between the models of the ax-
iom system that contains the density axiom, the question concerning the difference
in cardinality remains unsolved. Given the relativity of cardinality, on the basis of
which we have supposed that the cardinal number of the basic set of elements of
God’s construction of the world that contains the structures of higher cardinalities
is not greater thanℵ0, as well as the assumption that the introduction of a higher
cardinality can mean nothing else but a change of the holistic meaning of the order-
ing relation, we must try, by pursuing the Hilbertian approach, to grasp this change
axiomatically.

Contrary to standard dense but not continuous structures, Cantor’s discontinuum
as a specific, non-standard discontinuous structure, whichcontains “wholes” that
are continuous, can be expressed only in a system that contains axioms (9) and (10)
(see 4.1), which implicitly define structures of a higher cardinality. This means that
the system containing just first eight axioms must be said to be incomplete, since it
is non-trivially extendable though the introduction of newaxioms. So, the specific
non-categoricalness of the system defining dense structures can be overcome if we
complete it in one way or another by using axioms (9) and (10) or their negations.
Let us mention that we can get interesting non-standard models only one of the two
axioms [3, 3.3].

But again, if we add axioms (9) and (10) that are necessary forobtaining linear
continua, we obtain a formal theory that is further completable in different ways!
In particular, the system containing 10 axioms cited above (in 4.1) can be extended
through the introduction of large-scale and small-scale Archimedean axioms as well
as through the introduction of the non-Archimedean ones. So, for instance, we can
preclude the non-standard interpretation by introducing the following two axioms
[3, p. 42]:
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∃α1∃α2 . . .∃αn . . . (α2 < α1∧
∧

1≤i<ω
α2i−1 < α2i+1∧

∧

1≤i<ω
α2i+2 < α2i ∧

∧∀β
∧

1≤i<ω
((αi < β ∧β < αi+2)→

∧

1≤k<ω
¬β = αk)∧

∧∀γ
∨

1≤i, j<ω
(αi < γ ∧ γ < α j))

and

∃α1 . . .∃αn . . .

(∀β
∨

1≤i, j<ω
(αi < β ∧β < α j)∧∀γ∀δ (γ < δ →

∨

1≤i<ω
(γ < αk∧αk < δ )))

where the first of them precludes the hyper-finite elements, while the second one
precludes infinitesimals.

And so on, and so forth. It is clear in which way we are to cope with the problem
of non-categoricalness. Though it is not possible to settlethis problem once for ever,
whenever it can be reduced to the incompleteness question, we can apply thepay-as-
you-gostrategy and preclude the unintended non-isomorphic models by a concrete
extension of the theory. And in a possible case in which it were not possible to
proceed in this way any longer, the problem should be re-considered as the question
concerning the weakness of the formal language we have used.

And finally, as for the question about cardinalities of different structures we come
across by following God’s re-structuring the world, it mustbe admitted that it cannot
be answered in a straightforward way, since it is not clear how exactly mathemati-
cians themselves use the concept of cardinality after its re-conceptualization in view
of the Löwenheim-Skolem Theorem and the cited results of Cohen, Feferman and
Levy. As I suggested above, only discrete structures like〈N,≤〉, should be said to
be directly denumerable. But this does not mean that there are not special reasons
for distinguishing various kinds of countability in the derivative sense. Mathemat-
ical reality is more complex than the reality of the Cantorian space-world we have
been talking about. It would be interesting to see which reasons have led some of
mathematicians to assume that 2ℵ0 = ℵ2 [37], but such an investigation lies outside
the scope of this paper.
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