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Summary

Starting from the generalized concept of syntactically and semantically trivial 
diff erences between two formal theories introduced by Arsenijević, we show that 
two systems of the linear continuum, the Cantorian point-based system and the 
Aristotelian interval-based system that satisfi es Cantor’s coherence condition, are 
only trivially diff erent.  So, the ‘great struggle’ (to use Cantor’s phrase) between 
the two contending parties turns out to be ‘much ado about nothing’.

1. Introduction

According to what Aristotle called Zeno’s axiom,1 no n-dimensional entity 
consists solely of (n-1)-dimensional entities. Accepting Zeno’s axiom and 
rejecting atomism at the same time, Aristotle established an interval-based 
conception of the continuum that ‘involves indeterminate parts’ and was 
therefore later called ‘indefi nitism’.2 Th is conception was the offi  cial con-
ception of the continuum till the end of the nineteenth century, although 
mathematicians often used infi nitesimals as ‘useful fi ctions’,3 and physicists 
sometimes endorsed atomism (but not as an analysis of the continuum).

Because the competing ‘theorists […] either leave ultimate elements of 
matter totally indeterminate, or […] they assume them to be so-called 
atoms of very small, yet not entirely disappearing space-contents’, the ‘great 
struggle’ among the followers of Aristotle and Epicurus so scandalized 
Georg Cantor that he was unwilling to let the matter go unresolved.4 Bold-
ly rejecting Zeno’s axiom, Cantor established the point-based conception 

1. See Aristotle, Metaphysics 1001 b 7.

2. See Leibniz G., II, pp. 281–83.

3. See ibid. GM, IV, p. 91–95.

4. Cantor 1962, p. 275.
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of the continuum, stating that a linearly ordered set of null-dimensional 
points actually makes up a continuum if the set is perfect and coherent 
(zusammenhängend),5 which means that each element of the set is an 
accumulation point of an infi nite number of elements of the set, whereas 
each accumulation point of an infi nite number of elements of the set is 
an element of the basic set itself.

Th e revival of infi nitesimalism6 and the formalization of the non-Archi-
medean system of the continuum7 did not prevent Cantorians from domi-
nating twentieth-century mathematics just as Aristotelians had dominated 
the subject till the end of the nineteenth century. Cantor’s theory has been 
enormously infl uential. Logicians have formalized it, mathematicians have 
accepted it as a basis for Standard Analysis, and because of it philosophers 
have changed their mind about the structure of the physical world. Even 
physicists haven’t quantized space and time, in spite of the fact that they 
acknowledge the existence of the quantum of action.

But though the majority of mathematicians and scientists sided with 
Cantor’s view, and many prominent philosophers did considerable work to 
defend it as the ontology of the physical world,8 in the last three decades 
of the last century a number of authors revived the Aristotelian stretch-
based approach.9

However, in his 2003 article Arsenijević10 argued that there are interest-
ing cases in which two axiomatic systems, or two formal theories, which 
are syntactically and semantically non-trivially diff erent in the standard 
sense of these terms should be rather classifi ed as only trivially diff erent. 
What we now want to prove is that the point-based and the interval-based 
system of the continuum represent a remarkable instance of such a case, so 
that the ‘great struggle’ between Cantorians and Neo-Aristotelians turns 
out to be ‘much ado about nothing’.

Arsenijević has formulated two sets of translation rules that he has 
shown11 to be suffi  cient for the mutual translatability of the formulas of 

5. Ibid. p. 190.

6. See Ehrlich 2005.

7. Robinson, A. 1974.

8. For instance, Russell 1903 and 1914, Carnap 1928, Grünbaum 1952 and 1974, Salmon 

1975, Robinson, D. 1989, Lewis 1994, Earman and Roberts 2006.

9. Hamblin 1969 and  1971, Humberstone 1979, Foldes, 1980, Needham 1981, Burgess 

1982, Comer 1985, White 1988, Bochman 1990a and 1990b, Benthem van 1991 and 1995, 

Roeper 1997, and 2006.

10. Arsenijević 2003, pp. 2–4.

11. Ibid. pp. 8–9.
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the point-based and the interval-based systems when their axioms are so 
selected that they implicitly defi ne linearly ordered dense structures. Th e 
leading idea of Arsenijević’s proof that these systems are trivially diff er-
ent consists in using as the basis of the translations the so-called Felix 
Bernstein’s mapping12 between the two sets of formulas, which is a 1-1 
mapping of all the formulas of each of the two sets into (and not onto) 
the set of formulas of the other set.13

From a purely syntactical point of view, it is suffi  cient that, in both 
directions, each theorem, but no non-theorem, is translated by a theorem. 
From a semantic point of view, however, it is not suffi  cient that, in both 
directions, each truth, but no falsehood, is translated by a truth, since it 
is necessary that each translation also be structure preserving. Th is means 
that both the elements and relations of a model of one of the systems 
must be unequivocally spoken of in terms of the elements and relations 
of a model of the other system. In the case at hand, the foregoing require-
ment will be satisfi ed because any element of the interval structure will be 
unequivocally identifi ed and spoken of as a stretch between two distinct 
points of the point structure, whereas each element of the point structure 
will be unequivocally identifi ed and spoken of as an abutment place of two 
abutting stretches of the stretch structure. Th e identity and precedence 
relations of either of the two structures will be unequivocally defi nable 
via the identity and precedence relations of the other structure in the way 
in which it is done below (see translation rules C1 and C2, and also C*1 
and C*2).

Now, the main problem of using the translation rules formulated by 
Arsenijević lies in the fact that those rules are tailored to fi rst-order lan-
guages, whereas the continuity axiom (defi ning implicitly the coherence 
of the set of points and the set of stretches) is normally formulated in a 
second-order language. In order to avoid this problem, we shall use the 
Lω1ω1 language to express the continuity axiom in both systems. Th ese for-
mulations will make it possible to extend the applicability of the translation 
rules formulated for the fi rst-order languages without any modifi cation.

As for the diff erence between translation rules concerning quantifi ers 
(C5 and C*5) as originally formulated by Arsenijević and as they are formu-
lated below,14 the new formulation has an obvious advantage in simplicity, 

12. See Cantor 1962, p. 450.

13. See Arsenijević 2003, pp. 3, 8–9.

14. Compare the two original formulations in Arsenijević 2003, pp. 8–9 with the two given 

below.
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but it will also enable us to translate the continuity axioms of the two 
systems into a considerably shorter form (see the comments below about 
the shorter form of translating the closed formulas).

In the next Section, we shall desribe the two formal theories and cite 
the re-formulated translation rules in full, so that the article will be self-
contained.

2.  Comparison between the point-based and the interval-based systems of the 
continuum according to the generalized defi nition of the trivial diff erences 
between formal theories

Let S
P
 contain —besides the logical constants ¬, ⇒, ∧, ∨ and ⇔ —indi-

vidual variables α1, α2,…, αi,…, β1, β2,…, βi,…, γ1, γ2,…, γi,…, δ1, δ2,…, 
δi,…, quantifi able by universal and existential quantifi ers. Th e variables are 
supposed to range over a set of null-dimensional points. Also let SP contain 
relation symbols ≡, < and >, to be interpreted as the identity, precedence, 
and succession relations respectively. Let the elementary wff s of SP be
αm ≡ αn, αm < αn and αm > αn, where am > an ⇔def. an < am. Finally, let 
axiom schemes of SP be the following ten formulas, which we shall refer 
to as (AP1), (AP2),…, (AP10):

1. (αn)¬αn < αn

2. (αl)(αm)(αn)(αl < αm ∧ αm < αn ⇒ αl < αn)
3. (αm)(αn)(αm < αn ∨ αn < αm ∨ αm ≡ αn)
4. (αl)(αm)(αn)(αl ≡ αm ∧ αl < αn ⇒ αm < αn)
5. (αl)(αm)(αn)(αl ≡ αm ∧ αn < αl ⇒ αn < αm)
6. (αm)(∃αn)αm < αn

7. (αm)(∃αn)αn < αm

8. (αm)(αn)(αm < αn ⇒ (∃αl)(αm < αl ∧ αl < αn))
9. (α

1
)(α

2
)…(αi)… ((∃β1)(∧1≤i<ω αi < β1) ⇒

 ⇒ (∃γ1)(∧1≤i<ω αi < γ1 ∧¬(∃δ1)(∧1≤i<ω αi < δ1 ∧ δ1 
< γ1)))

10. (α
1
)(α

2
)…(α

i
)… ((∃β1)(∧1≤i<ω αi > β1) ⇒

 ⇒ (∃γ1)(∧1≤i<ω αi > γ1 ∧ ¬(∃δ1)(∧1≤i<ω αi> δ1 
∧ δ1 

> γ1)))

Let SI contain — besides the logical constants ¬, ⇒, ∧, ∨ and ⇔ — indi-
vidual variables a1, a2,…, ai,…, b1, b2,…, bi,…, c1, c2,…, ci,…, d1, d2,…, 
di,…, quantifi able by universal and existential quantifi ers. Th e variables 
are supposed to range over one-dimensional stretches. Also let SP contain 
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the relation symbols =, p, f, ⎨, ∩ and , to be interpreted as the iden-
tity, (total) precedence, (total) succession, abutment, overlapping and 
inclusion relations respectively. Th en, the elementary wff s will be am 

= an,
am 

p an, am 
f an, am ⎨ an, am ∩ an, 

and
 
am  an. But though it will be some-

times useful and much easier to use all these relations, it is important to 
note that not only f, but also ⎨, ∩ and , are defi nable via = and p in 
the following way:

am f an ⇔def. an p am,
am ⎨ an ⇔def. am p an ∧ ¬(∃al)(am p al ∧ al p an),
am ∩ an ⇔def. (∃al)(∃ak)(al p an ∧¬al p am ∧ am 

p ak 
∧ ¬an p ak),

am  an ⇔def. ¬am = an ∧ (al)(al ∩ am ⇒ al ∩ an).

Finally, let axiom schemes of S
I
 be the following ten formulas, which we 

shall refer to as (AI1), (AI2),…, (AI10):

1. (an)¬an p an

2. (ak)(al)(am)(an)(ak p am ∧ al p an ⇒ ak p an ∨ al p am)
3. (am)(an)(am p an ⇒ am ⎨ an ∨ (∃al)(am ⎨ a

l
 ∧ al ⎨ an))

4. (ak)(al)(am)(an)(ak ⎨ am ∧ ak ⎨ an ∧ al ⎨ am ⇒ al ⎨ an)
5. (ak)(al)(am)(an)(ak ⎨ al ∧ al ⎨ an ∧ ak ⎨ am ∧ am ⎨ an ⇒ al = am)
6. (am)(∃an) am

 p an

7. (am)(∃an) an
 p am

8. (am)(∃an) an  am

9. (a1)(a2)…(ai)…((∃u)(∧1≤i<ω  ai
 p u) ⇒ 

 ⇒ (∃v) (∧1≤i<ω  ai
 p v ∧ ¬(∃w) (∧1≤i<ω 

 
ai p 

w  ∧ w p v)))
10. (a1)(2)…(ai)…((∃u)(∧1≤i<ω  ai  f u) ⇒ 
 ⇒ (∃v)(∧1≤i<ω ai

  f v ∧ ¬(∃w)(∧1≤i<ω 
ai f 

w  ∧ w f v)))

Now, let f  be a function

f : αn ⎯→ 〈a2n−1, a2n〉 (n = 1, 2,…)

mapping variables of SP into ordered pairs of variables of SP, and let C1–C5 
be the following translation rules providing a 1-1 translation of all the wff s 
of SP into a subset of the wff s of SI (where =C means “is to be translated 
according to syntactic constraints C as”):
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C1:
 αn ≡ αm =C a2n−1 ⎨ a2n  ∧ a2m−1 

⎨ a2m ∧ a2n−1 ⎨ a2m,
C2:
 αn < αm =C a2n−1 ⎨ a2n ∧ a2m−1 

⎨ a2m ∧ a2n−1 p a2m ∧ ¬a2n−1 
⎨ a2m,

C3:
  ¬FP =C ¬C(FP), where FP is a wff  of SP translated according to 

C1–C5  into wff  C(FP) of SI,
C4: 
  FP′♥FP″ =C C(FP′)♥C(FP″), where ♥ stands for ⇒ or ∧ or ∨ or 

⇔, and FP’ and FP” stand for two wff s of SP translated according 
to C1–C5  into two wff s of SI, C(FP′) and C(FP″) respectively,

C5:
 (αn)Ω(αn) =C(a2n−1)(a2n)((a2n−1 ⎨ a2n) ⇒ Ω*(a2n−1, a2n)) and
 (∃αn)Ω(αn) =C(∃a2n−1)(∃a2n)((a2n−1 ⎨ a2n) ∧ Ω*(a2n−1, a2n)),
  where Ω(αn) is a formula of SP translated into formula

Ω*(a2n−1, a2n) of SI according to C1–C5 .

Let  f*  be a function

f* : an ⎯→ 〈α2n−1, α2n〉 (n = 1, 2,…)

mapping variables of SI into ordered pairs of variables of SP, and let C*1–C*5 
be the following translation rules providing a 1-1 translation of all the 
wff s of SI into a subset of the wff s of SP (where =C* is to be understood 
analogously to  =C):

C*1:
 an = am =C* α2n−1 < α2n  

∧ α2m−1 < α2m ∧ α2n−1 ≡ α2m−1 ∧ α2n ≡ α2m,
C*2:
 an p am =C* α2n−1 < α2n  

∧ α2m−1 < α2m ∧ ¬α2m−1 < α2n,
C*3:
  ¬FI =C* ¬C*(FI), where FI is a wff  of SI translated according to 

C*1–C*5 into wff   C(FI) of SP,
C*4:
  FI’♥FI” =C* C*(FI’)♥C*(FI”), where ♥ stands for ⇒ or ∧ or ∨ or 

⇔, and FI’ and FI” stand for two wff s of SI translated according to 
C*1–C*5 into two wff s of SP, C*(FI’) and C*(FI”) respectively,

C*
5
: 

 (an)Φ(an) =C*(α2n−1)(α2n)((α2n−1 < α2n) ⇒ Φ*(α2n−1, α2n)) and
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 (∃an)Φ(an) =C*(∃α2n−1)(∃α2n)((α2n−1 < α2n) ∧ Φ*(α2n−1, α2n)),
 where Φ(an) is a formula of SI translated into formula
 Φ*(α2n−1, α2n) of SP according to C*1–C*5.

These translation rules (C1–C5 and C*1–C*5) constitute an effective 
mechanical procedure for translating any formula of either of the two 
systems, be it open or closed, into exactly one formula of the other system. 
However, since by translating closed formulas the condition occurring in 
the translation of quantifi ers reoccurs necessarily either as a conjunct or 
as a part of the consequent of the translation (depending on whether the 
existential or the universal quantifi er is involved in a given translation), 
we can always obtain an equivalent but shorter version of the resulting 
formula. Since it is obvious why it is so if the quantifi er of the original 
formula is existential, let us take an example when it is universal. Let Φ(an) 
be (AI1), that is

(an)¬(an p an).

According to C*1–C*5, the translation Φ*(α2n−1, α2n) of (AI1), to be denot-
ed as (AI1)*, reads as follows:

(α2n−1)(α2n)(α2n−1 < α2n ⇒ ¬(α2n−1 < α2n  ∧ α2n−1 < α2n ∧ ¬α2n−1 < α2n)).

However, this is equivalent to

(α2n−1)(α2n)(α2n−1 < α2n ⇒ ¬¬α2n−1 < α2n),

since α2n−1 < α2n  
∧ α2n−1 < α2n occurring in the consequent can be erased, 

given that in propositional calculus p ⇒ ¬(p ∧ p ∧ q) is equivalent to
p ⇒ ¬ q.

Now, by using this device for obtaining the shorter form of a transla-
tion, we get (AP9)* as a translation of the axiom (AP9):

(AP9)*
 (a1)(a2)…(ai)… (∧1≤i<ω a2i−1 ⎨ a

2i
 ⇒ ((∃b1)(∃b2)( b1 ⎨ b2 ∧

  ∧ (∧1≤i<ω ai p b2)) ⇒
 ⇒ (∃c

1
)(∃c2)(c1 ⎨ c2 ∧ (∧1≤i<ω ai p c2) ∧ 

 ∧¬(∃d1)¬(∃d2)(d1 ⎨ d2 ∧ ((∧1≤i<ω ai p d2) ∧ d1 p c2 ∧ ¬ d1 ⎨c2)))).
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In the same way, we get (AI9)* as a translation of the axiom (AI9):

(AI9)*
 (α1)(α2)…(αi)… (∧1≤i<ω α2i−1 < α2i ⇒ ((∃β1)(∃β2)( β1 < β2 ∧
  ∧ (∧1≤i<ω ¬β1 < α2i)) ⇒
 ⇒ (∃γ1)(∃γ2)(γ1 < γ2 ∧ (∧1≤i<ω ¬γ1 < α2i) ∧ 
 ∧¬(∃δ1)¬(∃δ2)(δ1 < δ2 ∧ ((∧1≤i<ω ¬δ1< α2i) ∧ ¬γ1 < δ2)))).

Th e main thing to do is to prove that both (AP9)* and (AP10)*, as well as 
(AI9)* and (AI10)*,  are theorems of SI and SP, respectively.

Proof for (AP9)*
Let us assume both

∧1≤i<ω a2i−1 ⎨ a2i   and   (∃b1)(∃b2)( b1 ⎨ b2 ∧ (∧1≤i<ω a
i
 p b2)),

which are the two antecedents of (AP9)*. Now, since for any i (1≤i<ω),
ai p b2, it follows directly from (AI9) that there is v such that ai

 p v and, 
for no w, both 

 
ai p 

w and w p v.
Let us now assume, contrary to the statement of the consequent of 

(AP9)*, that for any two c1, c2 such that c1 ⎨ c2 and for any i (1≤i<ω) ai p c2, 
there are always d1 and d2 such that d1 ⎨ d2 and for any i (1≤i<ω)  ai p d2, 
so that d1 p c2 and ¬ d1 ⎨ c2. But then, if we take c2 to be just v from the 
consequent of (AI9) (and c1 any interval such that c1 ⎨ c2), the assump-
tion that for any i (1≤i<ω) ai p c2 but d1 p c2 and ¬ d1 ⎨ c2 contradicts 
the choice of c2, since if c2 

= v, then, according to (AI9),  for any d1 and d2 
such that d1 ⎨ d2 and for any i (1≤i<ω) ai p d2, it cannot be that d1 p c2
and ¬ d1 ⎨ c2.  (Q.E.D.)

Proof for (A
I
9)*

Let us assume both

∧1≤i<ω α2i−1 < α2i and (∃β1)(∃β2)( β1 < β2 ∧ (∧1≤i<ω ¬β1 < α2i)),

which are the two antecedents of (AI9)*. Now, since for any i (1≤i<ω), 
¬β1 < α2i implies ¬β1 < αi, it follows directly from (AP9) that there is γ 
such that ¬γ < α

i
 and for no δ, both ¬δ <

  
αi  and δ < γ.

Let us now assume, contrary to the statement of the consequent of (AI9)*, 
that for any two γ1, γ2 such that γ1 < γ2 and for any i (1≤i<ω) ¬γ1 < α2i,
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there are always δ1 and δ2 such that δ1 < δ2 and for any i (1≤i<ω) ¬δ1 < α2i,
so that ¬δ1 < α2i and ¬γ1 < δ2. But then, if we take γ1 to be just γ from 
the consequent of (AP9) (and γ2 any point such that γ1 < γ2), we get fi rst 
¬γ1 < δ2, and then δ1 < γ

1
 (since δ1 < δ2), which contradicts the choice of 

γ1, since if γ
1
 ≡ γ,  there is no δ (and so also no δ1) such that both ¬δ <

  
αi 

and δ < ¬γ1.  (Q.E.D.)
It can proved analogously that (AP10)* and (AI10)* are also theorems 

of SI and SP, respectively.

3. Conclusion

Because of the intuitive similarity between the point-based and the inter-
val-based systems of the continuum, it is hard to believe, in spite of the 
‘great struggle’ between Cantorians and Aristotelians, that nobody else had 
the idea that the two systems of the continuum are not so radically dif-
ferent that there wouldn’t be some sense in which one could say that they 
are merely trivially diff erent. And yes, by speaking about instant-based and 
period-based time systems, van Benthem has proclaimed that ‘systematic 
connections between point structures and period structures enable one to 
use both perspectives at will’.15 But, van Benthem says nothing concrete 
about how these ‘systematic connections’ are to be formally defi ned and 
how it is to be proved that the point-based and the interval-based systems 
conform to such a defi nition.

Now, in Section 2 it is established that after translating (AP9) into SI 
and (AI9) into SP the obtained formulas (AP9)* and (AI9)* are theorems of 
SI and SP respectively. Th e same holds for (AP10)* and (AI10)*. Together 
with Arsenijević’s analogous 2003 result concerning the fi rst eight axioms 
of the two systems, this is suffi  cient for suggesting that SP and SI are syn-
tactically only trivially diff erent. However, more needs to be said about 
the alleged semantically trivial diff erence between them, for there is a 
seemingly striking discrepancy between the entities of their corresponding
models.

Th e basic elements of the intended model of SP are points, whereas 
intervals are continuous sets of points. Th e basic elements of the intend-
ed model of SI are stretches, whilst points are the abutment places of 
abutting stretches. But aren’t stretches (of SI) and intervals (of SP) hope-

15. Van Benthem 1991, p. 84.
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lessly diff erent entities, given that stretches are neither open nor closed 
nor half-open (half-closed), whereas intervals are necessarily either open 
or closed or half-open (half-closed)? Th e solution to this problem can 
be found in the way in which in (AI9) and (AI10) the suppositions for 
the existence of the least upper bound and the greatest lower bound are 
introduced. Namely, an infi nite set of stretches having the least upper 
bound correspond to an interval open on the right side in the point-based 
structure, whereas, analogously, an infi nite number of stretches having 
the greatest lower bound correspond to an interval open on the left side. 
Consequently, an infi nite number of stretches having both the least upper 
and the greatest lower bound correspond to an open interval. And then, 
curiously enough, stretches themselves, which are originally neither closed 
nor open, turn out to correspond to closed intervals in the point-based
structure.

Th ere is another big philosophical question that has to be answered. 
According to Quine’s famous slogan ‘To be assumed as an entity is to 
be reckoned as the value of a variable’16, the two formal theories are not 
trivially diff erent if there is no model in which their variables range over 
the elements of one and the same basic set, and in the case of SP and SI 

their variables can never do this. But why should it be so important what 
variables do, if the set of entities — elementary and non-elementary — is the 
same in any intended model of the two theories?

So, pace Quine, there are good reasons for saying that SP and SI  are 
only trivially diff erent. Syntactically, it is suffi  cient that there are two sets 
of translation rules that, though not inverses of one another, are theorem 
preserving. Semantically, it is suffi  cient that when speaking about points 
we cannot avoid automatically saying something unequivocal about stretches, 
and vice versa.17

Finally, let us mention a benign asymmetry between the two systems. 
When we speak of a least upper bound in a continuous point-based struc-
ture, it is always just a single point. However, the least upper bound in a 
continuous interval structure is not a single interval but an equivalence 
class of intervals. Th is trivial fact is a consequence of another trivial fact. 
Contrary to a stretch, which is always a single interval of an interval struc-
ture, the place of the abutment of any two intervals, which defi nes a point 
of a point structure, is always an abutment place of an infi nite number of 

16. Quine 1961, p. 13.

17. See Arsenijević 2003, pp. 10–11.
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intervals. But we can always choose one pair from the equivalence class 
of abutting intervals to represent a given point.18
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