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Milo3 Arsenijevié

Mathematics, Infinity and the Physical World

ABSTRACT: It is shown that geometric objects can supervene on the phy-
sical: one should let individual variables range over entities of the
highest dimension and start with part-whole and touching relations as
primitives. However, some geometric objects definable analytically,
such as segments of the so-called remarkable curves, are shown to be
impossibly existent in the physical world, although they are mathemati-
cally indistinguishable, in view of their existence, from those which are
possibly existent. The cause of that is shown to lie in the mathematical
treatment of infinity, which allows an infinite heterogeneity to appear at
a higher-order level.

"Les mathématiciens ont autani besoin d'éire
hilosophes que les philosophes d'étre mathé-

P phes q P /2

maticiens"

Leibniz, Letter to Malebranche, March 1699

1. The setting of the problem

It would be hard even to cite all questions discussed, or still to be
discussed, which concern the relation between any two of the three no-
tions from the title of this paper. Fortunately, the combination of all
three by itself makes the number of questions smaller, and the particular
question I am ‘going to deal with here will enable me, I hope, to
introduce it unproblematically isolated from the rest of questions.
However, the answer to the question can still be expected to be also
illuminating for some other aspects of the problem for the following rea-
son. Taken generally, we are going to deal with the question of whether,
how and which geometric entities can exist in the physical world. Now,
on the one hand, geometry is probably more closely related to the
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physical world than any other branch of mathematics. On the other
hand, however, the machinery of modern mathematics enables us to deal
with geometry in a purely analytic manner, where no intuitions borro-
wed from the physical world are essentially needed. This curious posi-
tion of geometry should make, after all, the answer to our question illu-
minating for a more general question about the relation between mathe-
matics and the physical world as well as for the fact that there are geo-
metric entities definable according to the mathematical way of procee-
ding which are not possibly existent in the physical world and which are
yet, in view of their possible existence, mathematically indistinguishable
from those which are possibly existent.

The concept of infinity, essentially involved in our central question,

will appear later, when we start to investigate the so-called remarkable
curves. But, before doing that, I want to clarify the sense in which the
existence of geometric entities in the physical world can be unproble-
matically spoken of, by dispelling three critical remarks directed against
the possibility of such an existence.
1. As the first point, I want to dispel the argument that there can be no
geometric points, lines and surfaces in the physical world due to the fact
that physical points, lines and surfaces are never to be said to be null-,
one- and two-dimensional entities respectively, in a strict sense of the
word.

Given that we agree that, strictly speaking, points, lines and surfaces
which are said to be physical are necessarily not null-, one- and two-di-
mensional entities, this doesn't mean that there are no geometric entities
in the physical world, simply because that which we have supposedly
agreed upon doesn't imply that it is impossible to define null-, one- and
two-dimensional entities via that which is physical par excellence and
to show, on the basis of such a definition, that there can be geometric
entities in the physical world.

Let us remember how points, lines and surfaces are conceived by Ari-
stotle.! They are understood as limits of limited physical bodies, belon-
ging to them without being parts of them, and if there is a physical cube,
for instance, there must be also geometric points, lines and surfaces in
the physical world.

By using the tools of formal logic, one can define n-dimensional enti-
ties as limits of (limited) (#+1)-dimensional entities by letiing individual
variables range over limited (n+1)-dimensional entities and starting with
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part-whole and touching relations as primitives, which can supposedly
hold between physical entities.

Fig. 1 Fig. 2 Fig. 3

Looking at Fig. I, one sees that there is an intuitive sense in which the
shaded area 4 is an ending part of the whole circled area, whereas the
shaded area B is an internal part of it. Given that the circled area is a
part of the plane on which the circle is placed, part @ of the boundary
line, as the outside limit of 4, can be unequivocally defined as an equi-
valence class generated by A, namely, as the set of all parts of the
outside area which are touched by 4.

Let w,z,y,z range over proper parts of the plane on which the
circled area is placed, let @ C y be read as 'z is a proper part of i, let
z C y be shorthand for z = y V= G y and let 2Ty mean 'z touches
y’, where G is supposed to be transitive and T to be symmetric.

In congruence with standard geometry, it should be supposed that
(=)@)y C 2, (2)@)z G v, (2)(v)(@Ty = ~(32)(x Sz Az C y))
and (z)(y)(~(F2)(2 Sz Az Cy) = 2Ty V (Fw)(zTw A yTw)).

Notice that, in order to preclude the possibitity of 'holes' within the
plane over whose parts our variables range, the ordinary touching rela-
tion should be supplemented by a contiguity relation as an ordered and
asymmetric touching relation, say T, so that for any chosen direction
within the plane holds that (x)(3y)xT—y. As a consequence, the plane
would be continuous and infinite in any direction and our variables
would range over parts limited in any direction.

Now, let = G, y be read as 'z is an ending part of 4’ and be defined
as follows:

TCey=xCyA(Fz)(zTzA-(Ju)(w CyAwC 2)).

A limit of y - such as segment @ of the circle in Fig. I - can be
defined as equivalence class [x] generated by x, namely:

[z] ={zlz Cy A2Tz A ~(Fw)(w CyAw G 2)}.
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It is easy to see that the last definition is applicable whenever »-di-
mensicnal limits are to be defined vig (n+1)-dimensional entities. For
instance, points 4 and B at Fig. 2 can be defined as equivalence classes
[x] and [¥] of all paris of line / which lie outside segment o and which
touch a left endsegment x and a right endsegment y respectively.

Although limits are not supposed to be parts of entities whose limits
they are, they themselves can have parts, which holds for surfaces as li-
mits of bodies just as for lines as limits of surfaces. Only points as limits
supposedly have no parts.

Now, an entity is n-dimensional, for #>0, if and only if it has (»-1)-
dimensional limits and no limits whose dimension is greater than n-1.

It is to be noticed that it is not said that n-dimensional entities can
have only (»-1)-dimensional limits. It is reasonable and congruent with
standard geometry to accept that 'being a limit' is tramsitive, so that H-
mits of a limit of an entity are also limits of the entity itself. An equiva-
lence class generated by an ending part of an n-dimensional entity can
define a limit whose dimension is »-%, for £>1, as is the case with ending
part A at Fig. 3.

It seems now that we can say - in respect of the first critical remark at
least - that there can be geometric entities in the physical world. It is
enough to let individual variables range over proper parts of an #»-
dimensional physical space, where # is standardly equal to 3, and obtain
all geometric entities as actually or possibly existent (n-k)-dimensional
limits (0<k=n). [t seems resonable to say that geometric entities introduo-
ced in such a way are actually existent in the physical world if and only
if they are limits between physically distinguished, i.e. heterbgeneous,
parts of the physical space, and only possibly existent in the physical
world if and only if they are limits between physically not distinguished
but yet physically distinguishable parts, where parts distinguished and
distinguishable are any ending part generating the equivalence class as-

sociated with a given limit and any member of the equivalence class.

True, one could still argue that it should rather be said that there are
not geometric entities in the physical world, if they are supposediy
completely reduced to non-geometric entities. This is, however, a tricky
remark. One can say equally well, as we have done, that there are geo-
metric entities in the physical world just because they are reducible to
physical ones.

Of course, the question of whether only those geometric entities
should be said to exis? which are reducible 1o physical ones is itself at is-
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sue and can be traced back to the dispute between Plato and Aristotle.
But, in order to raise the central question we are going to deal with, it is
sufficient to accept that geometric entities can be said to exist in the phy-
sic;zl world only by supervening on the physical in the sense just explai-'
ned.

2. It is said above that those and only those geometric entities should be
said to be possibly existent in the physical world which are supposed to
be actualizable as boundaries between physically distinguished parts of
the physical space. Now, it can be remarked that it is hard to believe that
a perfect square, for instance, could ever be actualized in such a way.

However inessential this remark seems to be, it can be of use for the

clarification of the main concern of the paper. Namely, however highly
improbable it can be that there are perfect squares, circles, ete., in the
physical world, it is not impossible that such entities exist in the physical
world. We shall not deal with probabilities, but with possibilities. Quite- -
concretely, we are going to deal with the question which of the mathe-
matically definable geometric entities are possibly existent in the Dphysi-
cal world,

3. The third remark is similar to the previous one. It concerns limitations
imposed by our current knowledge about what is Physically possible.
For instance - and this will turn out to be an important point in the fol-
lowing discussion - if a curve is to be drawn by an endlessly oscillating
motion, such that the period of the function defining the motion be-
comes always smaller and smaller, the motion can be said to become
physically impossible after a certain point. However, we shall ignore
such limitations. We shall extrapolate physical possibilities to their ima-
ginable maxima and take into account only fhose limitations - if there
are any - which are imposed by a priori grounds concerning the very
relation between the mathematically definable and the physically possi-
ble. The examination of such limitations can be said to be one of the two
main concerns of the paper. The second one is complementary and re-
lates to the mathematical way of proceeding which conceals the diffe-
rence between those geometric entities which are possibly existent in the
Physica! world and some other, very similar but yet only abstract ob-
Jects,

We can now turn to our central question.
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2. Remarkable curves

Let us define a function f{x) piecewise in the following way:

flz) = zsinlf/z for —2/r <z < 0and 0 <z <2/,
0 for z =0,

(-2/my 2/mM)\{” fi/fr, 2/17)

Fig 4

The graph of f{x) (see Fig. 4) is a wave curve continuous on the inter-
val [-2/m, 2/n], having, at the same time, no tangent at the point (0, 0).

The given curve is said to be remarkable just because it is continuous
on an interval within which there is a point at which it has no tangent.

In order to apprehend more clearly the mathematical way of procee-
ding underlying the non-coextensiveness between being continuous and
being everywhere differentiable, it will be of use to see how a curve
continuous everywhere but differentiable nowhere is to be obtained by a
purely geomelric construction.

Fig. 5 Fig. 6 Fig. 7

Let us start with the segment AB represented in Fig. 5 and let us de-
lete the middle third so that the endpoints C and D are left standing. Let
us replace the gap between C and D by a peak, by constructing the two
sides of an equilateral triangle over the deleted third, obtaining in such a
manner the broken line ACEDB represented in Fig 6. Let us proceed by
doing the same with AC, CE, ED, and DB as we have done with AB,
obtaining in such a way the broken line AFHGCIKJELNMDOQPB re-
presented in Fig. 7. Let us now do the same with segments AF, FH, HG,
GC, CI, IK, KJ, JE, EL, LN, NM, MD, DO, OQ, QP and PB as has been
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done with the original segment AB, and let us imagine that the process
of replacement of the segments obtained in such a way has been analo-
gously carrying on endlessly. After the completion of the infinite pro-
cess of replacement, allegedly possible, we shall finally obtain a conti-
nuous curve as a limiting figure which has a tangent at no point.

The figure obtained as a limiting figure is continuous because the size
of the piled-up peaks always becomes smaller and smaller. It has, at the
same time, no tangent because the path of a point moving from A, let us
say, along the approximating poligon last drawn, will rise many times
to a summit (as in E and H) and drop many times to the original seg-
ment AB (as in G and F), so that, if the process of infinite replacement
is supposed to be completed, the secants passing through A will move
up and down infinitely often, moving back and forth between 60° and 0°
without approaching a definite limiting position. What holds for A holds
also for any point in the neighbourhood of A as well as for any point on
the limiting figure.

The given construction of an everywhere continuous but nowhere dif-
ferentiable curve has been invented by von Koch. However, in view of
the historical fact that Weierstrass was the first who defined a conti-
nuous but completely non-differentiable function? - the function
fz) = Yo7, b"cos(a™z), where a is an odd integer and b a positive
constant less than 1 such that ab < 1437 /2 - we shall call all curves
without tangents Weiersirassean curves.

Once the Weierstrassean curves had entered the historical scene, ma-
thematicians were quick to construct various curves which are remar-
kable not only as being continuous and, at the same time, non-differen-
tiable, but also as exibiting some other astonishing properties.

Let us look, for instance, at what is represented in Fig. 8.

Fig. 8

One would certainly say, without hesitation, that it is a square, i.e., a
fwo-dimensional figure. But, as Peano showed 1890, it can be viewed as
a curve as well, i.e., as an one-dimensional figure.

Let us start dividing a unit square into (21)2, (22)2,..., (2%)2,... squares
of equal size, each time connecting the centre points of the squares ob-
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tained through a division by a single broken line, as shown in Fig. 9, 10
and /7 for »=1, #n=3 and »=6 respectively. Supposing that the infinite
process has been not only carrying on endlessly but also completed, the
resulting figure can be shown? to be a Weierstrassean curve passing just
once through every point of the original unit square.

mud Exue xRl
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Fig. 9 Fig. 10 Fig. 11

Now, what can it mean that each point of a continucus line coincides
with just one point of a square? Does it mean perhaps that there is no
clear distinction between entities of different dimensions any more?

Fortunately, Brouwer* was quick to show us, 1911, that a clear diffe-
rentiation between entities of different dimensions can still be estab-
lished through the fact that a portion of a k-dimensional continuum can
only be put into a one-to-one correspondence to another portion of a
continuum if the latter one is also k-dimensional, and never to a portion
of an m-dimensional continuum if m=k.

Let us illusirate Brouwer's result with a comparison between Cantor's
correspondence contained in his famous proof that the cardinal number
of the set of points of the unit segment is the same as the cardinal num-
ber of the set of points of the unit square and a correspondence between
the set of points of the unit segment and the set of points of Peano's
CUrve. .

Let the left endpoint of a segment of a line correspond to zero, written
as 0.000..., and the right endpoint correspond to 1, written as 0.999... .
Let, according to the so-called Dedekind-Cantor axiom, every point
lying between the two points correspond to just one real number, written
as 0.a,a»a3..., where at least one digit in any decimal expansion differs
from zero and 9. According to the same axiom, each point of a square as
a two-dimensional entity can be brought into one-to-one correspondence
with just one ordered pair of real numbers, each of the numbers written
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as above. Now, there is one-to-one mapping of the set of points of the
segments onto the set of points of the square, because each number
written as O.ayayes... corresponds to just one number written as
(0.aya3...a5p 1., 0.apay..ap..) (K1, 2,...), and vice versa. However,
the correspondence is nof continuous, which is easy to see by comparing
neighbowring points of the segment with the corresponding image points
of the square. Contrary to this case, the set of points of the unut segment
can be put into one-to-one and continuous correspondence with the set
of points of Peano's curve and vice versa, since this holds for any two
limited lines. According to Brouwer's proof, such an outcome is not ac-
cidental.

Wittgenstein® was very much impressed by the fact that one and the
same figure can be seen in two different and incompatible ways, as a
rabbit's head and as a duck’s head, for instance (see Fig. /2). He should
have been, however, much more impressed by the fact that two figures
which coincide completely can be gralyfically conceived as figures of
different dimensions, which, according to Brouwer's proof, are irredu-
cibly different entities and not just different aspects of one and the same

figure.
Y

Fig. 12

Let us turn, finally, to the Weierstrassean curve invented by Sier-
pinski, which exibits an additional curious property.

&a
Fig 13

A point on a curve is said to be branch point if and only if the boun-
dary of any of its arbitrarily smali neighbourhoods has more than two
points in common with the curve, as point o in Fig. 13.
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Fig 14 Fig 15 Fig. 16

Let us suppose that an equilateral friangle has been inscribed within a
given equilateral triangle and the interior of the inscribed triangle erased
- as represented by the shaded area in Fig. /4 - its sides having been left
standing. Let us suppose that the same has been done with each of the
three triangles remaining, then also with each of the nine triangles obtai-
ned, and so on endlessly with each of 3" triangles (»=1, 2....), as shown
in Fig. 15 and 16 for »=2 and »n=>5 respectively. The points of the origi-
nal triangle that survive the infinitely numerous erasures can be shown
to form a curve all of whose points, with the exception of the vertex
points of the original triangle, are branch points.

3. Remarkable curves and the physical world

Is it possible that there are remarkable curves in the physical world, gi-
ven that there can be geometric objects in the physical world in the
sense explained in Section I?

It has turned out that, from a mathematical standpoint, one-dimensio-
nality together with continuity is the only necessary and sufficient con-
dition for being a curve (if straight and broken lines are understood as
special cases of curves). So, our question turns out to be about whether
to be continuous and one-dimensional is also sufficient for being possi-
bly existent in the physical world.

Let me start by citing two characteristic opinions about remarkable
curves which seem to be prevailing in the whole twentieth century phi-
losophy of mathematics.

Hans Hahn, speaking about the "crisis in intuition”, states that "again
and again we have found that in geometric questions, and indeed in sim-
ple and elementary geometric questions, intuition is a wholly unreliable
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guide" and that "it is impossible to permit so unreliable an aid to serve
as the starting point or basis of mathematical discipline".¢ But, to be
sure, Hahn doesn't speak about mathematics as a self-coniained and
isolated discipline only. He compares the situation which has ‘arisen
through the invention of remarkable curves with the situation when "the
theory that the earth is a sphere was also once an affront to intuition”,”
implying clearly that such an achievement in mathematics can have so-
mething to do with what is possibly existent.

Partly contrary to the opinion of Hahn, Karl Menger states that "if a
word which already has a meaning attached to it in daily life is to be
precisely defined in science, there is no reason for setting it in contra-
diction to the daily usage of the word, that is, for excluding from the
concept things generally designated by the word under consideration, or
including in it things generally not designated by it". He states that
"hence, a formal requirement for the rigorous definition of a word
appearing in the colloquial language is the following: it should make
precise and complement the usage of the word which is vague and in-
complete in border cases without contradiciing the same".8 It is impor-
tant to note that Friedrich Waismann claims, arguing in favour of Men-
ger's view, that it is exactly the conception according to which the line is
a boundary between two coloured surfaces which doesn't contradict the

- mathematical definition following from the generalization implied by

the discovery of remarkable curves.®

The point common to both these views is that what should finally be
regarded as a curve and wherther and how lines are at all to be distin-
guished from other geometric entities is to be decided within mathema-
tics itself on the basis of its purely analytic way of proceeding and inde-
pendently of any intuition or visualization. So, for instance, however
one may be shocked by the statement that what is represented in Fig. 8
can be a curve, it can be a curve because it is analytically definable as a
curve, and however he may be shocked again by the statement that, in
spite of that, a curve can never be said to be a square and vice versa, it
must be accepted that it is so due fo the clear and non-exceptional ana-
Iytic differentiation between one- and two-dimensional entities.

The difference between the two views lies in the fact that, according
to Hahn, the concept of curve should rather be said to be re-defined on
the basis of the historical development of mathematics, whereas Menger
and Waismann hold instead that what is done by Weierstrass, von Koch,
Peano, Brouwer and others represents actually a discovery of new, asto-




100 Milo$ Arsenijevic

nishing properties of entities which still can be said to be curves in the
same sense in which curves were conceived before this discovery.

To put the last point quite strictly, Menger and Waismann hold that
the necessary and sufficient condition for being a curve has always been
thought to be one-dimensionality together with continuity - what has
turned out to remain unchanged in the modern analytic definition of
curve - only that, once, mathematicians thought wrongly that the two
properties imply by themselves that there are no curves without tangents,
curves coinciding with all points of two-dimensional figures, and so on.
It was allegedly not a wrong conception of curve which prevailed in the
mathematics of those days, but rather the 'paradisical' state of igno-
rance, as Waismann puts it by citing Felix Klein, "in which one did not
distinguish in the case of a continuous function between good and evil,
differentiable and non-differentiable".10

Now, I want to argue that the two views - that of Klein, Menger and
Waismann and that of Hahn - are both false or, at least, misleading, be-
cause an esseniial aspect, concerning just the relation between mathe-
matics and the physical world, is either not taken into consideration at
all or it is oversimplified at least.

Let us start with the simplest case, with the wave function defined at
the beginning of Section II. It is clear that the graph of the function can
be nothing but a limited, continuous and one-dimensional object, i.e., a
curve, according to the modern analytic definition. So far, so good. The
question is, however, whether such an object can exist in the physical
world, given that geometric entities supervene on physical entities in the
manner in which we have introduced them in Section . When dealing
with this question, we are asking for necessary and sufficient conditions
for being a curve possibly existent in the physical world and not just for
being an analytically definable curve. Starting without prejudices of any
kind, one should admit that there is no reason to believe that 'being ana-
lytically definable' implies automatically 'being possibly existent in the
physical world'.

True, according to a well-known theorem from model theory, if a set
of sentences is consistent, it has a model. But, it is not said that such a
set must have a model within the physical world. Restrictions concer-
ning the rules of the language game related to a given relational-opera-
tional structure must also be taken into account. I can understand, for in-
stance, what '-500 dollars' means, when I am being informed about the
state of my bank account. Negative numbers can be attached to horses in
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a similar way, in order to express the fact, say, that I owe you two hor-
ses which I have to bring you back. But it makes no sense to speak
about negative two horses existing in your stable, or anywhere. Any
number of existing horses must be non-negative.

Now, both Hahn and Waismann accepfed Jordan's (and actually Xe-
nocrates') definition of a (limited) curve as a geometric figure which can
be generated by a point running along in continuous motion.

Let us suppose that a god, say Zeus, has constructed a device, a curve
drawing machine, consisting of two - quite imaginable - unlimitedly
elastic cubes of the same size, heterogeneous amongst themselves and
fitting perfectly snugly against each other, which, when being moved
along a perfect plane, produce a one-dimensional, i.e. geometric, line as
a limit between the two physically distinguished two-dimensional traces
produced by their bases fitting also perfectly snugly against the plane.

Notice that, by introducing such a curve drawing machine, we ignore
completely and deliberately the second remark dispelled in Section I,
and we will also ignore the third one. Notice also that any curve produ-
ced by any motion of the curve drawing machine along a perfect plane
fits Waismann's first definition of curve as a boundary between two sur-
faces heterogeneous amongst themselves, which is allegedly congruent
with the analytic definition.

Now, it is easy to see that Zeus will have no problems with drawing
any segments of ordinary curves, such as circles, parabolas, and so on.
How is he to proceed, however, in trying to continue to draw the graph
of the wave function under consideration, after he has supposedly rea-
ched the point (0, 0)? He mustrn't start moving the curve drawing ma-
chine along the x-axis. He mustn't take any direction entering the First
Quadrant. He mustn't take any direction entering the Fourth Quadrant.
But, at the same time, he should enter the part of the whole plane consi-
sting of just the First and the Fourth Quadrant. Therefore, he cannot do
what he should do.

I can't see any manoeuvre which could help Zeus in the given situa-
tion. It is up to the reader to try to find and to support a possibly diffe-
rent answer.

Just as it is impossible for Zeus to start drawing the graph of the gi-
ven function by beginning at the point (0, 0), it is impossible for him to
reach the same point from the left. Namely, given that traces of the two
bases of the curve drawing machine are not to be obtained by the bases
reaching the point (0, 0) from Quadrant 2 or from Quadrant 3 (including
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the negative part of the x-axis), and that the point (0, 0) should still be
reached by a motion along the part of the whole plane consisting of just
Quadrant 2 and Quadrant 3, the point could be reached only from
nowhere.

Therefore, the graph of the given wave function can't be drawn by
Zeus' curve drawing machine ar all, in spite of the fact that it is one-di-
mensional and continuous.

If Zeus can't draw the graph of the given wave function, he can't
draw, a fortiori, von Koch's curve. The three definitions of curve - de-
fining it as 1. a boundary between two parts of a plane heterogeneous
amongst themselves, 2. a geomeiric figure generated by a point running
along in continuous motion, 3. an one-dimensional and continuous ob-
ject defined analytically - are not coextensive, contrary to the alleged
continuity in the development of mathematics claimed, in relation to this
point at least, by Menger and Waismann.

More than that, however, the first and the third definition alone are
not coextensive, independently of the second one.

Let us raise the question, for instance, whether that which is repre-
sented in Fig. & can be a curve according to the first definition, which is
actually coextensive with our definition introduced in Section I, of a
curve possibly existent in the physical world (if entities of dimensions
greater than two are not taken into account). Now, although lines repre-
sented in Fig. 9, 10 and 11, as well as any line involved in the infinite
construction aproximating Peano's curve, can be said to be curves accor-
ding to the definition under consideration, this doesn't hold for Peano's
curve ifself, simply because, after the alleged completion of the infinite
process, there could be no place any more, within the original square,
for any heterogeneity. It is not difficult to see that nothing essentially
would be changed if we were allowed to take into account the entities of
higher dimensions too, given that it is supposed - as it should be, in or-
der to be in a position to let our individual variables range over physical
entities of the highest dimension - that there are entities of the highest
dimension (the number of dimensions being traditionally equal to three).

Similarly to the case discussed, the area of the original triangle within
which Sierpinski's curve is to be obtained leaves no free place, after an
infinite number of erasures, for any heterogeneity.

It can be said that, while the square associated with the corresponding
Peano's curve should become completeiy 'black’, the triangle associated
with the corresponding Sierpinski's curve should become completely
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‘white', which implies the impossibility of the existence of both the cur-
ves in the physical world.

Let us now turn to Hahn's view. Contrary to Menger and Waismann,
Hahn recognized the discontinuity in the development of mathematical
thinking affecting the topic discussed, which fits the non-coextensiven-
ess between the three cited definitions of 'curve'. But, the real founder of
the Vienna Circle and friend of Wittgenstein's Tractatus rejected decisi-
vely the attempt to examine philosophically the possibility of the exi-
stence of remarkable curves in view of the discrepancies between the
three definitions cited. The only question related to the existence of
geometric objects which he was willing to allow to be dealt with a priori
is the question of infernal and external existence in Hilbert's sense. The
question of internal existence simply amounts to proving within an
axiom system a statement of the form (dx)4. The question of external
existence is whether the system has an interpretation, and the sufficient
condition for that is that the system is consistent. The questions of inter-
nal and external existence are to be answered by logicians and mathe-
maticians only. Anything else which can be asked about the existence, or
possible existence, of mathematical structures concerns the question of
how much they are well suited for the interpretation of the observational
data thus far accumulated, and such a question can be answered, accor-
ding to Hahn, only indirectly and a posteriori by physicists.

I don't think that philosophers should be that modest. More than that, I
hold that they mustr't be that modest. There should be somebody to say
that the ontology of points, lines and surfaces supervening on the physi-
cal is incompatible with the possible existence of remarkable curves in
the physical world for a priori reasons.

However true it can be that mathematicians have always believed that
the necessary and sufficient condition for an entity being a curve is that
it is onme-dimensional and continuous, that which they once actually
thought to be a curve and which is expressible through the first two de-
finitions cited is not the same kind of entity as that which is implied to
be a curve by the contemporary analytic definition, because the former
definitions imply the possibility of existence in the physical world, and
the latter one doesn't.

We have established that for being a curve possibly existent in the
physical world it is not sufficient to be one-dimensional and continuous.
Some additional properties, which remarkable curves are deprived of,
have turned out to be also necessary.
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The remarkability of remarkable curves is not only psychological. Tt
has also something to do with the physical.

4. Remarkable curves and the mathematical treatment of infinity

If one sympathizes with the arguments from Section III, supporting the
impossibility of the existence of remarkable curves in the physical
world, he can still be reluctant to accept the conclusion before being
shown, in addition, by looking at the mathematical way of proceeding,
why the equation of a circle, for instance, defines a possibly existent and
the equation of a remarkable curve an impossibly existent object. One's
illusion can't be dispelled by his being confronted with the consequences
only. A source of the illusion should also be detected and the illusion
explained.

If a function is defined, we know absolutely precisely which value of
flx) is to correspond to any given value of x. So, how is it possible that
the graph of a continuous Weierstrassean function is an impossible ob-
ject in the physical world if points are allowed to exist in the physical
world and each of the points of the graph can be found precisely?

We seem to be confronted with a paradox - or an antinomy in the
Kantean sense - where different arguments from the pile lead to mu-
tually contradictory conclusions.

There is one thing related to the remarkable curves discussed - and
actually to any Weierstrassean curve - characteristically missing from
ordinary curves, which hints at a possibly essential difference between
the former and the latter: all remarkable curves - or at least all remark-
able points on them - are supposed to be obtained through an infinire
process allegedly completable. ,

I don't want to repeat various arguments, I dealt with elsewhere,!! di-
rected against the possibility of completion of an infinite process. For fi-
guring out the essential difference between ordinary and remarkable
curves, concealed by, or deliberately ignored in, the mathematical treat-
ment of infinity, it will suffice to point out what happens with ordinary
segments of ordinary lines when they are allowed to be viewed from the
infinitist standpoint.

In order to proceed in accordance with the manner in which lines and
points are understood in Section I, we shall not treat lines as consisting
of points as entities in themselves, but we can still try to treat a segment
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of a line as consisting of an infinite number of non-overlapping subseg-
menis whose limits are allowed to coincide (in accordance with the fact
that limits are mot understood as parts). For instance, a unit segment can
be attempted to be understood as consisting of its half, an abutting
quarter, an abutting eighth, and so on.

Now, the unit segment under consideration can't be a segment closed
on both sides, and, as a (half)-open segment, it is an object which is not
possibly existent in the physical world.

That the segment can't be closed on both sides follows from mathema-
tics itself. That a (half)-open segment is an impossible object in the phy-
sical world follows from the fact that there can be no limited physical
bodies without limits belonging to them. In order to draw a half-open
sgment, Zeus would need a curve drawing machine consisting of cubes
such that each of them doesn't have an endsurface.

Consequently, a physically real segment can't be viewed as consisting
of an infinite number of acfual subsegments,'? although any of its sub-
segments taken per se is supposed to be actualizable. True, by drawing
a real segment Zeus will also draw an infinite number of subsegments
definable mathematically, but he can't obtain a real segment in the oppo-
site way, by drawing each of the mathematically definable segments
separately.

The last point explains why it is impossible for a limited physical
body to consist of an infinite number of parts physically distinguished
amongst themselves.!3 But it can explain also why there can be circles
but no remarkable curves in the physical world. Namely, contrary to an
ordinary (closed) segment of an ordinary line, remarkable curves are
infinitely heterogeneous at the second-order level. For instance, the
wave curve we have dealt with should have an infinite number of ¢ur-
ning points. It is just this infinite heterogeneity which makes the cor-
responding wave function non-differentiable at the point (0, 0).

It is of crucial importance to notice that nothing in the above expla-
nation depends on limitations which physicists could impose from their
standpoint. Nothing depends on too small smallness or too great great-
ness. Zeus is allowed to carry the infinite process further and further on,
when he tries to obtain a remarkable curve. But he can't succeed all the
same.

The reason for Zeus' failing to succeed depends only on the logic of
infinity applied to the physical world. If one starts by letting individual
variables range over entities of the highest dimension, where the number
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of dimensions has to be finite, he can't get an infinite heterogeneity at
any level.

There is no greatest number of waves of the wave curve actualizable
in a possible case, but the number of them must be finite in any possible
case. Mathematicians may speak correctly of an infinite number of wa-
ves not for the reason that they speak of no acfual cases, but for the re-
ason that they speak about no particular case, be it actual or possible, so
that the number of waves is not fixed and can be said, consequently, to
be greater than in any particular case. This is the only reason why some
mathematically definable geometric objects are abstract entities.

The argument that for the possible existence of a continuous one-di-
mensional entity it is sufficient that it is analytically definable by a
function, because we know precisely which value of f{x) is to corre-
spond to any given value of x, ceases to be convincing when we remem-
ber that points should be points of one and the same otherwise actua-
lizable line. Mathematicians ignore any 'otherwise', in accordance with
their way of proceeding, and take all actualizable members of an infinite
series as actualizable simultaneously, which is not always the case,
(x)aAd not implying a(x)4 ('for any x, it is possible that A' doesn't imply
'it is possible, for all ', that 4",

3. Concluding remark

Independently of how the reader will judge the value of the above argu-
ments, he will hopefully accept, as a general lesson, that there are intri-
guing questions concerning the relation between mathematics and the
physical world which can be dealt with in an a priori manner, not only
by examining language games played by mathematicians and physicists,
but also by using the strong reductio ad absurdum method,'® which Ari-
stotle called dialectic,'® intended to test the plausibility of various views
about the possible existence of mathematical entities. This is a typically
philosophical job, not to be done by physicists as physicists and mathe-
maticians as mathematicians. Physicists qua physicists would be too
dogmatic and mathematicians gua mathematicians too liberal.

Of course, philosophers can do their job badly, and mathematicians
and physicists are invited to help them. But, in doing that, they have to
become philosophers. A musician can happen to cook better than a pro-
fessional cook, but when he cooks, he is a cook.
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